D.后件底真假值(1 / 1)

1.新的正或负的例证。以上两表示中,头一表示中有atn+1—btn+1,这就是说新的例证与以前的例证一样,它当然更增加A—B底大概性或可能性。这就是说A—B得到新的帮助。第二表示中有,这就是说新的例证与以前的例证都不一样。可是,新的例证仍是例证,不过是负的例证而已。有负的例证在前件,原来的后件推翻。上面两表示都是归纳原则,不同点即一为证实A—B,而一为否证A—B而已。

2.假如新例证是负的。我们现在不讨论以上所说头一表示,只注重第二表示。在此第二表示中,我们假设atn+1,btn+1没有“—”关系或情形。时间已经由tn而前进到tn+1了。如果我们从引用归纳原则着想,则C段(1)条之所表示可以写成以下的甲,而C段(4)条第二表示可以写成以下的乙(“大概”仍不提及);

这里说“所以”,当然表示推论,引用归纳原则去作归纳,当然有这样的推论。甲推论以C段(1)条所表示的如果—则为第一前提,以上面的例证为第二前提,而推论到A—B。乙推论以C段(4)条第二表示所表示的如果—则为第一前提,以上面的例证为第二前提,而推论到A-B。这两推论一样而结论不同,因为前提不同。

3.新例证来时,现在已由tn到tn+1,前件底内容改变。结论不同,前提不同,因前件底内容跟着时间改变了。由以tn为现在的现在过渡到以tn+1为现在的现在,归纳原则底前件底内容改变,所以推论底第二前提不是在tn那时候的第二前提了;而其结果就是归纳原则底后件底真假值也就改变了,所以结论与在tn时候底结论恰恰相反。我们在这里乃假设观察者底观察没有错误,我们只说前件底例证增加,内容改变,我们没有谈到前件的真假值。观察者在他底观察也许错了,如果错了,前件也许是假的命题,前件是假的,也就表示第二前提是假的。在此情形下结论虽对然而仍是假的命题。这一方面的问题我们不注重,我们仍假设观察者没有观察上的错误。我们所注重的是时间由tn川流到tn+1,新的例证可以推翻旧的结论。

4.A—B虽推翻而原则不因此推翻。注重A,B的人,或引用归纳原则到A,B的人对于A—B底推翻,也许不快乐,不自在,也许他从前(在tn时)盼望A—B成为自然律,而现在(在tn+1时)失望。他也许向来就不相信A—B,他有种种理由不相信A—B是自然律,果然如此,则现在(tn+1)A—B既经推翻,他非常之高兴。这是从注重A,B的人着想。他只引用归纳原则而已,对于此原则本身不必有兴趣。我们在知识论所注重的不是A,B,不是A—B底真假。我们所注重的是归纳原则本身。就此原则本身说,A—B虽可真可假,然而原则不因此就真就假。这一点以上已经有相当表示。在下节我们用另外方法表示。