D. 具叙述词的命题的推演(1 / 1)

1. 解释弁言。

P. M. 的作者对于“美国皇帝是胖子”这样的话,很费了一番解析的工夫。这样的话一方面有存在的问题,另一方面又有所谓叙述词的问题。所谓叙述词者在原书中为description。“叙述词”这一名词很不好,可是如果我们改用“形容词”或“摹状词”结果恐怕更坏。

在此处我们稍微谈谈存在方面的困难。“龙不存在”这样一命题有什么困难呢?如果龙存在,那么就有那样存在的东西,我们不能先假设这样存在的东西,而又否认它的存在。如果龙不存在,我们的困难更大,我们不能提出一不存在的东西,叫它作龙,说它不存在。这样看来,龙存在,有困难;龙不存在,也有困难。照P. M. 的作者的解析,龙根本不是逻辑上的主词,仅是文法上的主词;不是命题的主词,而是一句话的主词。照他们的解析,“龙不存在”等于“‘有x,而x是龙’是假的”。这样一来,主词的龙已经消灭。

以上存在的问题,发生于叙述词。P. M. 曾举“author of waverley”以为叙述词的例。从这个例看来,原书中的“description”不便称之为摹状词,或形容词。我们可以用“孔子是《春秋》的作者”为例。这命题中的“《春秋》的作者”就是所谓叙述词。在英文里这种词都有“the”字在前面,很容易识别,在中文里似乎不容易;即以以上“龙不存在”那一命题中的“龙”字而论,它可以解释成叙述词,而不必作如是的解释。但“《春秋》的作者”是P. M.中所讨论的叙述词,它就是“(τx)(x作《春秋》)”。“孔子是《春秋》的作者”这一命题表示孔子与《春秋》的作者是一个人。但如果“《春秋》的作者”是某甲的名字,则此命题成为“孔子是某甲”;如果某甲不是孔子,则此命题是假的;如果某甲是孔子,则此命题成为“孔子是孔子”,而此绝非原来命题的意义。“《春秋》的作者”这样的叙述词,P. M. 称之为不完整的符号,其所以认为是不完整的符号的道理,因为它们似乎没有独立的意义。它们虽没有独立的意义,而具叙述词的命题仍有真假。单就“《春秋》的作者”而言,我们或不至于发生此处所提出的问题,但如果所讨论者为“法国的国王姓赵”“美国的皇帝是胖子”“帝尧是冬夏的作者”等等,则此处所提出的问题就会发生。

叙述词既无独立的意义,而只有具叙述词的命题的意义,我们所要解释的当然是后者,仍以“孔子是《春秋》的作者”为例,我们所要解释的不是“《春秋》的作者”这样的叙述词,而是“孔子是《春秋》的作者”这样的命题。解析起来,这一命题所肯定的有以下三命题:

a. 有一个x作《春秋》

b. 只有一个x作《春秋》

c. 作《春秋》的x是c,而c是孔子

如果三个命题之中有一为假,则“孔子是《春秋》的作者”为假。如第一命题为假,则根本就没有《春秋》的作者。如第二命题为假,即有《春秋》的作者,而作者不止一人;如第三个命题为假,则《春秋》的作者即有其人,而且即只有一人,那个人也不是孔子。兹以“φ”代表作《春秋》,“f”代表是孔子,“孔子是《春秋》的作者”可以有以下的表示:

在此表示中,叙述词已经消灭。“孔子是《春秋》的作者”看起来是简单的命题,其实不是。

P. M. 以(τx)(φx)代表叙述词,那就是说,满足φ的x。这种叙述词有时叙述存在的个体,有时叙述不存在的个体。前者的问题以上的讨论已经很够,后者的问题尚有应该补充的地方。例如“英国的国王不是胖子”,假设这一命题是假的,其根据是英国的国王事实上不满足“胖子”的定义,而不是没有英国的国王。但是,如果我们的命题是“美国的皇帝不是胖子”,则这一命题的假有不清楚的地方。我们可以把它解释成“有美国的皇帝,而他不是胖子”;但我们也可以把它解释成“有美国的皇帝,而他是胖子”是假的。“美国皇帝不是胖子”照第一解释是假命题,因为根本就没有美国的皇帝;照第二解释是真命题,因为美国皇帝是胖子是一假命题。这两种不同的解释要有符号方面的分别才行。P. M. 有以下不同的表示,其不同之处根据于叙述词力量所及的范围,而这个范围以叙述词右旁的点的多少表示之。例如以下甲乙两公式:

在甲公式中,(τx)(φx)的力量仅及于ψ(τx)(φ·x)而已,不达到P;如果(τx)(φx)叙述一不存在的东西,则之前的命题既是假的,照以前已经证明所有的含义看来,整个的命题是真的。在乙公式中,(τx)(φx)的力量及于整个的命题,如果(τx)(φx)叙述一不存在的东西,则此整个的命题是假的。这里甲乙两式的分别完全在叙述词右旁的点的多少。举例或者能使我们清楚一点,设(τx)(φx)叙述美国的皇帝,ψ代表是胖子,p代表“我不是人”。甲说“如果有美国的皇帝而他是胖子,则我不是人”;乙说“有美国的皇帝,如果他是胖子,则我不是人”。前一命题是我们日常生活中打赌的时候常说的话,它不过表示前件为假而已;所以如果前件是假的,则整个的命题是真的。后一命题中,美国皇帝的存在不是假设,所以如果没有美国的皇帝,则整个的命题是假的。

上面所说的“美国皇帝不是胖子”那一句话的两个解释有同样的问题,不过在此处与其从叙述词的力量的范围方面着想,不如从“不”的力量的范围方面着想。第一解释“有美国的皇帝,而他不是胖子”可以有以下的表示:

丙,(τx)(φx)·~ ψ(τx)(φx);

第二解释“‘有美国的皇帝,而他是胖子’是假的”可以有以下的表示:

丁,~((τx)(φx)·ψ(τx)(φx))。

在丙式中“不”的力量仅及于美国皇帝的“胖”而无关于美国皇帝的存在;所以只要美国皇帝不存在,这一命题就是假的。在丁式中“不”的力量及于美国皇帝是胖子这一整个命题;所以只要美国的皇帝不存在,这一命题就是真的。

2. 本段所选择的几个命题。

(这就是利用具叙述词的命题的定义说它与某样不具叙述词的命题真假值相等。前一部的写法可以从简仅写ψ(τx)(φx)。)

(这不过是具两个叙述词的命题,其他情形与以上的一样。)

(这里表示如果满足φ的x存在,则凡满足φ的(x,y)都相同。这里的叙述词是唯一的叙述词。)

(上段13.16那一命题说:x=y·≡·y=x,本命题不是由那一命题直接推论出来的,因为“a=(τx)(φx)”不是“a=y”的值,因为叙述词无独立的意义。)

14.131,├:a(τx)(φx)=(τx)(ψx)·≡·(τx)(ψx)=(τx)(φx)

(以上的注解在此处亦同样引用。)

(这段里的“a,b,c…”都指具体的个体而言。这两个命题所表示的情形一样,不过方法不同而已。如果某甲是《伯夷列传》的作者,而《伯夷列传》的作者是《货殖列传》的作者,则某甲是《货殖列传》的作者。前一命题不过少一叙述词而已。)

(这与14.142那一命题的分别不过是那一命题的“a”在这一命题中也以一叙述词表示之。这三个命题表示叙述词有传递质。)

(举例来说:“如果《伯夷列传》的作者就是《货殖列传》的作者,则说前者是汉朝人等于说后者是汉朝人。”这里的“等于”是真假值的等于。)

(如果一叙述词所叙述的东西存在,则如果所有的东西是ψ,这东西也是ψ。P. M. 的意见是以叙述词的存在为它有无性质的条件;如果它不存在,则存在东西所有的最普遍的逻辑方面的情形,它也没有;例如法国皇帝(现在的)既不胖也不不胖。这里的意见是否为治逻辑者所能赞成为另一问题。)

(这是一极显而易见的命题。如果有是φ的x,则有x的φ。“是”字不妥当,举实例时常用不着它。)

14.202,├:(x)·φx·≡·x=b:≡:(τx)(φx)=b:≡:(x):φx·≡·b=x:≡:b=(τx)(φx)

(说“任何东西是φ等于说它是b”,这一整个的命题等于说“是φ的x是b”……)

(这个也很易见,读者自己可以给它以语言方面的解释。)

(举例来说:说《春秋》的作者是圣人等于说有某甲,他是《春秋》的作者而他是圣人。)

(这命题表示叙述词的存在至为重要。存在是具叙述词的命题的必要条件。如果我们能说《春秋》的作者是圣人,则《春秋》的作者存在。)

(这命题也表示叙述词的存在的重要。说《春秋》的作者存在等于说《春秋》的作者作《春秋》。“《春秋》的作者作《春秋》”,照P. M. 看来,不是必然的命题,因为如果没有《春秋》的作者,则这句话是假的。)

(14.13与14.131,两命题可以说是表示叙述词有对称质;14.14、14.142与14.144,三命题均表示叙述词有传递质。本命题表示在叙述词这一方面自反质与其他两质不同,叙述词的自反质须以存在为条件。“《春秋》的作者是《春秋》的作者”这一命题以“《春秋》的作者”的存在为条件,它不是必然命题;“美国的皇帝是美国的皇帝”是一假命题。)