关于假言推论的批评可以分以下诸点:1. 假言推论中的implication;2. 假言推论中类与类的关系及命题与命题的关系;3. 假言推论的证明。
1. 蕴涵关系是一命题与命题的关系。它有以下各不同的种类,最流行的有四类:a. 路易斯的严格蕴涵关系;b. Moore的entailment或意义蕴涵关系;c. 形式蕴涵关系;d. 真值蕴涵关系。这几种推论以后均须从长讨论,此处从略。它们的共同点就是前件真后件亦真,后件假前件亦假,但各有其特殊情形。真值蕴涵没有意义的关系,那就是说前件与后件在意义上彼此不必相涉。形式蕴涵一方面是假言命题,另一方面又是一直言命题;一方面前件与后件有实质的关系,另一方面它们也可以说有意义的关系。一部分传统逻辑所称为假言命题的命题可以解作形式蕴涵,一部分似乎不能。Moore的entailment与通常所谓蕴涵或者最近;但如果形式蕴涵总结多数的真值蕴涵,entailment也可以说是总结多数的意义蕴涵。传统逻辑是否都是意义的蕴涵呢?这可不容易说。路易斯的严格蕴涵关系,一方面近乎传统的蕴涵关系,一方面又的确不是传统的蕴涵关系,因为它有它的“paradox”。
究竟传统逻辑的蕴涵关系是怎样的关系,我们不敢说;究竟事实上我们在辩论中所引用的蕴涵关系是怎样的关系,我们也不敢说。不但我们不敢说,恐怕当代名师也不敢说。同时我们似乎也要注意:究竟是有问题未得解决呢,还是所谓问题者根本就不是问题呢?如果这问题根本就不是问题,我们用不着讨论;如果是问题,究竟是怎样的问题呢?对于后一层我们或者可以把它分作好几个问题。(一)传统的蕴涵究竟有一致的或一定的意义吗?(二)如果有以上所表示的,不过是说我们到现在还不知道它一致的或一定的意义如何;如果没有,我们的问题是传统的蕴涵有几种,而各种的不同点又何在呢?(三)各种不同的蕴涵有共同的意义呢,还是只有最低限度的意义呢,还是共同的意义就是最低限度的意义呢?蕴涵的问题太大,牵扯出来的问题太多,本书不必讨论,也不能讨论;现在所要表示的就是传统的蕴涵关系,或者意义不清楚,或者有一致的意义而我们不知其意义之所在。
2. 假言命题中类与类的关系及命题与命题的关系。在讨论假言推论的时候,我们曾说表示充分条件的假言推论有三式,而三式之中有以下两式:
a. 如果甲是乙,则甲是丙:
甲是乙, 或甲不是丙,
所以甲是丙; 所以甲不是乙。
b. 如果甲是乙,则丙是丁:
甲是乙, 或丙不是丁,
所以丙是丁; 所以甲不是乙。
此中a式的大前提仅有三名词,b式的大前提有四。仅有三名词的假言命题很容易变成表示名词关系的直言命题,例如:a式的大前提可以变成“所有的乙都是丙”或“所有的甲乙(既甲且乙)都是丙”。既然如此,我们可以把a式假言命题中前件与后件表示的关系解作名词的关系。比方我说“如果一个人是河北人,则他是中国人”,我们可以把它限制到狭义的表示,解作“所有的河北人都是中国人”。这似乎毫无牵强的地方。b式的大前提则不然。它这样的假言命题不容易变成表示名词关系的直言命题。“如果甲是乙,则丙是丁”表面上似乎可以变成:
(一)所有是丙之丁都是乙之甲。
(二)所有的丙是甲,所有的乙是丁。
(三)所有甲是乙的时候,都是丙是丁的时候。
但举一例即知此种假言命题不容易变成表示名词关系的直言命题。如果我说“如果你有工夫,我们就上北平去”,我们不能把它变成:
(一)所有你有工夫,都是我们上北平去。
(二)所有我们都是你,所有上北平去的都是有工夫的。
(三)所有你有工夫的时候,都是我们上北平去的时候。
以上第三变化最不勉强。其所以比较不勉强的道理,似乎就是把前件整个的命题当作一名词,后件整个的命题当作另一名词。可见最便当的方法即承认b种
假言命题根本就表示命题与命题的关系而不表示名词的关系。
以上两种假言命题均见传统逻辑,它们所表示的是怎样的蕴涵关系呢?头一种似乎近乎Moore的entailment;后一种比较起来与它最相近的似乎是真值蕴涵。但究竟是不是呢?
3. 叙述传统逻辑的时候曾以三段论证明假言推论之规律。读者或者已经注意我们所“证明”的都是以上a种的假言推论。其所以如此者,一方面固然是因为以上a种假言推论最简单,但另一方面也就是因为以上b种假言推论中的大前提不容易变成表示名词关系的直言命题。既然有此困难,当然就不能以三段论的形式去表示这种假言推论,那也就是说,不容易以三段论去证明它的规律。我们对于假言推论似应注意以下诸点。
a. 表示两命题的蕴涵关系的假言命题,不必都改作表示名词的关系的直言命题,命题间的蕴涵不必根据于类与类的包含。类的逻辑与命题的逻辑似乎要分开。它们或者能包括于一系统之内,但要把它们包括在系统之内,它们的枢纽应该是严格的、明文的,用推论方式的枢纽才行。
b. 所谓“三段论”者不必是三个名词的关系或三个类的关系,关系可以有三段论,命题也可以有“三段论”。传统的三段论限于三个名词的关系,或三个类的关系,所以是狭义的三段论。假言推论的一部分虽不能或不易改作狭义的三段论,而我们不能说它不能改作宽义的三段论。以上b种假言推论就是一种三段论,不过它是命题的三段论,而不是名词或类的三段论而已。
c. 名词的三段论或类的三段论似乎均同时也是命题的三段论。即以barbara而论,我们固然可以把它分析到大词、中词、小词的关系的三段论,可是我们也可以把它当作前两个命题与后一命题的蕴涵关系的三段论。从这一点看来,命题比名词或者更为根本。此处根本两字仅表示由命题推到类或名词,比由类或名词推到命题或者容易一点。