F. 堆垛式及其他推论(1 / 1)

1. 简略的推论。所谓简略的推论者:a. 或者是不提大前提,仅提小前提与结论;b. 或者不提小前提,仅提大前提与结论;c. 或者不提结论,仅提大小两前提的推论。这当然是根据于三段论,不过在形式方面看来没有三个命题而已。

这种简略的推论,实是修辞方面、文学方面的技术,它使人动听,使人惊异;虽然根据于三段论式法,虽然表示三段论式在实际上之引用,而不容易视为逻辑的一部分。其所以曾经当作逻辑一部分者,因为传统逻辑没有把形式与实质分别清楚而已。兹特举例如下:

a. 不提大前提,如:“孔子是人,他也不免一死”。

b. 不提小前提,如:“所有的人既然都好色,他也好色”。

c. 不提结论,如:“杀人者死,而他杀了人”。

2. 前后三段论式。前后三段论式不过是两个三段论连在一块,以头一个三段论的结论为第二个三段论的大前提。兹特举例如下:

∴所有的D是A

前一部即为前三段论,后一部即为后三段论。这种前后三段论可以有两种不同的方向。一种是由相对普遍的到相对不普遍的,一种是由相对不普遍的到相对普遍的。这不过使读者知道有此说法而已。

3. 堆垛推论。所谓堆垛推论者(sorites,从张申府先生所用名词)即一大堆的三段论,省去各段的结论,仅提出总结论的推论。堆垛推论有两种:

a. 甲种如下例:

∴所有的A是E

b. 乙种如下例:

所有的A是B

∴所有的E是B

这两种堆垛推论都是一大堆的第一格式的三段论,所以它们都须遵守第一格的规律。

c. 甲种的规律如下:

(一)第一前提可以是特称,其余均须全称。

(二)最后的前提可以是否定,其他均须肯定。其实这两条规律就是第一格的规律。兹特将以上甲例分为三段论如下:

以上都是第一格的三段论,都应遵守第一格的规律,(一)大前提须全称,(二)小前提须肯定。甲种堆垛推论中只有第一前提是小前提,它必须是肯定命题;但既为小前提,它可以是全称,也可以是特称。甲种堆垛推论中之其他前提均为大前提,大前提须全称,所以它们不能特称。甲种堆垛推论的第一条规律,完全是第一格的规律。甲种堆垛推论的其他小前提,均为未曾以明文提出的各三段论的结论;如果任何非最后的前提是否定命题,则这些未曾以明文提出的小前提之中亦定有否定命题,小前提在第一格只能肯定不能否定,所以只有最后一前提才能否定。这也是遵守第一格的规律。

d. 乙种堆垛推论有同样的情形,它的规律如下:

(一)第一前提可以是否定命题,其他均须肯定。

(二)最后前提可以是特称,其他均须全称。

兹特将以上乙例分为三个三段论如下:

乙种的规律更显而易见是第一格的规律。只有第一前提是大前提,其余都是小前提。第一前提当然不能特称,可是可以是否定命题,其他前提既均为小前提,在第一格三段论中当然不能否定。同时只有最后前提可以特称,因为如果任何其他前提为特称,则各段的结论之中必有一特称命题,但各段的结论均为大前提,它们均不能特称,所以只有最后前提能特称。

4. 例外的推论。此处所谓例外者是不守三段论式的规律,而同时又靠得住的推论。这一种以上提出三段论式的定义时,已经提及。例如:

此推论有三命题,并且是靠得住的推论;但在三段论的范围之内,它是例外,因为(一)它不是主宾词式的命题,(二)如果把它当作主宾词命题则它有四名词如下:A、比B长、B、比C长。以后我们要表示这类的推论不是例外,如果我们提出普遍的三段论或普遍的传递关系的推论,它与传统的三段论的位置一样。其他守规则与不守规则的问题,有推论与无推论的问题等等,或者在详细分析之下不成问题,或者即有问题也不见得是逻辑方面的问题。凡此种种,本书均不提及。