D. 以上四格根据于中词在前提之位置(1 / 1)

中词在前提中仅有此四种不同的位置,所以只能有此四格。历来对于此四格,有各种讨论发生。例如,四格之中哪一格为最“上”,而答案大都是以第一格为最“上”。又如,第四格是否可以说得通?关于第四格,问题比较多。此处仅用约翰生(John son)先生的方法表示第四格之特别,也因此表示前三格的规律可以另外方法表示出来。

兹以S代表三命题中二次为主词的名词,P代表三命题中二次为宾词的名词,C代表三命题中一次为主词,一次为宾词的名词。根本原则:(一)要包含两次为主词两次为宾词的那两个名词的命题——“S——P”——能成任何命题。这就是说要使S——P这一命题能为A或E或I或O,毫无限制。(二)对于包含S与C的那一命题——“S——C”——问质不问量。S即为主词,而主词之周延与否以量定而不以质定(全称的主词,总是周延;特称的主词,总是不周延),若定S——C之量是限制“S——P”之量。所以对于S——C只能问质。(三)对于包含C与P的那一命题——“C——P”——问量不问质。P既为宾词,而宾词之周延与否以质定不以量定(否定的宾词,总是周延;肯定的宾词,总是不周延),若定P之质等于限制“S——P”之质。

a. 规律:

(一)小前提须肯定。

(二)大前提须全称。

b. 证明:

(一)小前提须肯定。在此格小前提为“S——C”命题,对于此命题问质不问量。小前提必须肯定,不然“S——P”一命题必为否定,“S——P”必须否定,则在质一方面不能不受限制,有违根本原则。所以小前提必须肯定,“S——P”才能不受质方面的限制。

(二)大前提必须全称。在此格大前提为“C——P”这一命题,而对于这一命题问量不问质。大前提必须全称,因为如果特称,则结论必为特称,那就是说“S——P”必为特称,而“S——P”受量的限制。为使“S——P”不受量的限制起见,大前提必须全称。

a. 为使“S——P”毫无限制起见,可有以下规律:

(一)结论必为否定;

(二)大前提必为全称。

b. 证明:

(一)结论必为否定。结论在此格为“S——C”这一命题,对于此命题问质不问量。从质方面着想,“S——C”应该是否定命题,因为如果肯定则前提均须肯定,而“S——P”既为小前提亦必须肯定。为使小前提“S——P”既可以肯定也可以否定起见,“S——C”这结论必为否定。这等于说两前提中必有一前提为否定命题。

(二)大前提必须全称。此格的大前提为“C——P”这一命题,而对于此一命题问量不问质。大前提“C——P”须全称,因为如果是特称,则根据两特称不能得结论的规律,小前提“S——P”这一命题非全称不可。如是则“S——P”在量的方面受限制。为使“S——P”在量的方面不受限制起见,大前提必须全称。

a. 此处为使大前提“S——P”毫无限制起见,可有以下规律:

(一)结论必须特称;

(二)小前提必须肯定。

b. 证明:

(一)结论必须特称。此处的结论为“C——P”这一命题。对于此问题问量不问质。结论须为特称,因为非特称,则两前提必须全称,“S——P”既为大前提亦必须为全称,如须全称则量受限制。为使大前提“S——P”不受量的限制起见,结论“C——P”非特称不可。

(二)小前提必须肯定。小前提在此处为“S——C”这一命题,而对于此命题问质不问量。“S——C”这小前提必须肯定,因为如果非肯定,而为否定,则大前提不能为否定而必须为肯定,因为两前提不能同为否定。为使大前提可以肯定又可以否定起见,小前提“S——C”不能不是肯定。

4. 以上一、二、三格在此处的说法条件之下,其规律与以先说法完全一致。证明的方法当然不同,但这不过是因为说法根本不同。第四格的情形与以上三格均不同,第四格不能满足新说法的根本条件。新说法根本条件之一就是“S”代表两次为主词的名词,“P”代表两次为宾词的名词,而“C”代表一次为主词一次为宾词的名词。第四格的形式既为:

根本就没有两次为主词的名称,也没有两次为宾词的名称,所以第四格根本就不合新说法的条件,这也表示第四格至少有特别的情形。这个新说法有以下诸点值得我们注意:

a. 表示第一、二、三格的规律不必以传统的方法证明,可以用新说法表示同样的情形。

b. 表示第四格与其他各格不同。

c. 表示以下所要讨论的“式”的特殊情形。第一、二、三格各格的式均有特殊的情形,这一层下段再说。