1.执一说法以为例。归纳原则底重要我们不必讨论,这显而易见。归纳原则究竟应该如何表示,我们也不必讨论。讨论起来,非数万言不可,而我们的兴趣根本不在那里。我们底主要问题是归纳原则之为接受总则,而不是我们如何归纳或我们在归纳所用的方法是如何的方法。对于实在引用归纳方法有兴趣的人,本节底讨论毫无贡献。我们以罗素所说的归纳原则为讨论底根据。他底说法如下:If in a great number of instances a thing of one kind is associated in a certain way with a thing of another kind and there is no instance to the contrary,then it is probable that a thing of the first kind is always similarly associated with a thing of the second kind;and as the number of instances increases indefinitely,the probability approaches to certainty,这说法似乎限于关系,其实不必限于关系。以下的讨论也许着重关系,可是,不特别地从关系着想也行。(以上是从记忆里背出来的,也许在文字上与原文有出入。)
2.大概问题撇开。照此说法的归纳原则当然有很重要问题,此即Probability问题。对于这问题作者没有特别的研究,有好些方面根本不懂,所以也不能提出讨论。好在从本章底主题着想,我们也不必讨论。在引用归纳方法时,就事论事,大概当然有程度高低问题,有在甚么情形之下程度高而在甚么情形之下程度低底问题,未引用大概推算(Calculus of probability)之前,先得有精细的安排,既引用大概推算之后,我们也许还要利用许多算学公式。这些问题都不是本章底问题。我们底主要问题是归纳原则是否永真,能否为将来所推翻?假如我们没有把握担保将来不会推翻已往,我们不能不承认将来也许会推翻归纳原则。此原则既可以为将来所推翻,当然就不永真了。假如将来推翻已往,也推翻归纳原则,则大概推算问题根本不发生,因为大概不经推算我们已经知道它等于零了。从别的方面着想,大概问题也许重要,然而从本章底讨论着想,大概问题不重要。
3.例证底代表性。大概所表示的可以说是例证与结论底关系质。假如例证不十分代表普遍情形,则大概底程度低;假如例证十分代表普遍情形,则大概底程度高。大概所注重的是特殊的例证底代表性。特殊的底代表性底根据,就是我们假设整个的将来不会与已往完全不相似。假如我们不假设将来不会与已往完全不相似,则特殊的例证是否有代表性本身就成为问题。如果特殊的例证根本就没有代表性可说,大概这一意念在归纳原则上可以说是根本取消了。我们在本章底问题就是此假设底问题。我们既然问将来是否会推翻已往,我们当然就是不假设将来不会与已往完全不相似。我们在本章底问题比大概底问题基本。我们可以说,在我们底问题解决之后,大概问题才发生。显而易见,假如我们底答案是将来一定会推翻已往,一定会推翻归纳原则,则特殊的例证根本没有代表性,当然也无所用其“大概”了。这当然不是说“大概”这一意念不要紧,从引用归纳法底人着想,它当然重要,不过从本章底主题着想,它不重要而已。
4.有无把握担保将来不会推翻归纳原则。对于归纳原则我们可以发生类似休谟所提出的问题,休谟本人也因此提出过。我们有没有把握担保将来不会推翻归纳原则呢?将来会不会变到一种局面,或一种世界,使归纳原则根本不能引用,或竟是假的呢?上章已经提到过中国的成语,天下无不变的事体。我们也常听见说,世界老在变更中。变更这一类事实,我们没有法子否认。问题是:世界会不会变到我们从已往所得的经验完全推翻,会不会变到归纳原则根本就不能引用?休谟底问题与我们所提的关于归纳原则底问题是一样的,此所以我们在本章谈休谟底问题。