C. 定义与基本命题(1 / 1)

本段所要提出讨论的各点如下:1. 定义;2. 系统的前提与推论方式;3. 选择的条件。

1. 定义。关于定义此前已经提及,一部分的问题也已经讨论过,此处不赘。此处所要提出的几点是:a. 系统中的定义表示引用名词之自由;b. 系统中定义的职责在化复杂为简单;c. 系统中的定义无所谓真假;d. 系统中的定义不在系统所要表示的实质范围之内。

a. 引用名词之自由。普通以为定义有名词与实质之分,其实只有名词的定义,没有实质的定义。所谓实质定义似乎有以下两层意思,而这两层意思似乎都说不通。

(一)所谓实质定义即普通教科书称为“real definition”的定义。普通定义大都以主宾词式的话表示。第一层的意思是说主词所代表的那具体的东西有定义所表示的意义。设以以下定义——“人是有理性的动物”——为例。第一层的意思是说具体的占时空的张三、李四等等有“有理性的动物”的意义。如果实质定义有这样的意思,实质定义似乎说不通。具体的东西无所谓有意义或无意义。这不是说它们有意义,也不是说它们无意义;这是说具体的东西与意义不相干,好像道德与颜色不相干一样。

(二)除此以外,实质定义似乎还有第二层意思。第二层意思可不是说主词所代表的具体的东西有某种意义,而是说主词有某种意义。第二层的意思比第一层的意思似乎高超一点,因为它把意义引用到名词方面,没有引用到具体的东西方面。但这一层也说不通,因为照这一层的意思,所谓定义者不是“定”某名词的意义,而是说事实上某名词有某种意义。即以(一)条所举的定义为例:照第二层意思,“人”这名词有“有理性动物”的意义。读者请注意这是一个命题。这是说事实上我们用“人”这名词的时候,我们也就把“有理性的动物”的意思包含或蕴涵在内。如果事实上我们用“人”这名词的时候,“有理性的动物”的意思并没有包含或蕴涵在内,这个命题就是一假命题。如果一句话表示事实,它是命题,系统中的定义所表示的不是事实,是意志。它表示系统中某名词有某种用法,至于系统范围之外,事实上那一名词是否有那种用法与它不相干。

(三)综观以上,系统中的定义不是普通所谓实质定义。它完全是名词的定义,可是虽是名词的定义,仍不是表示某种名词事实上有某种意义,而是表示某名词的用法如何而已。在英文,这样定义有时称为“voluntary definition”,所以如此称呼者,因为它表示引用名词之自由。

b. 化复杂为简单的职责。逻辑系统与其他许多系统一样,它的程序是由简单而复杂。这种程序的好与坏,它是否可以免除,等等的问题我们可以不必讨论。事实上既有这样的程序,我们也就有这样的程序所发生的问题。我们可以用几何为例:“四方”所表示的思想,不必有“四方”这名词,我们可以用“点”“线”“角”等等表示“四方”的思想。但是如果我们有一命题表示“四方”与“圆”的关系,不用“四方”与“圆”这两名词,仍以“点”“线”“角”等等表示之,那一命题就差不多没有法子说出来了。在欧克里几何系统范围之内,我们介绍“四方”这名词,不过是要化复杂为简单而已。

逻辑系统既是由简单而复杂,当然也有同样的问题。在P. M. 的基本命题中有这样一命题:

如果没有介绍的思想或符号,这个命题就只有以下的表示:

第二个表示比头一个就复杂得多。在一演绎系统的程序中演绎愈进,复杂的程度愈高,而复杂的程度愈高,愈要引用新名词以代表已有的复杂的思想。

系统中的定义一方面表示一系统对于一名词的用法,另一方面,介绍一简单的新名词用以代表已有的复杂的思想。前一方面表示作者引用名词的意志,后一方面表示定义在系统中的职责。

c. 定义无真假。表示意志的话无所谓真假。表示意志的话与表示某人有某项意志的话是两种不同的话,前者不是命题,后者是命题。命题是表示事实的话,如果所表示的是事实,通常认为它是真的,如果所表示的不是事实,通常认为是假的。系统方面的定义既不表示事实,它不是命题,所以它无所谓真假。这差不多完全是理论方面的话。可是有时在心理上理论与事实不容易分得很清楚。

例如P. M. 中的定义,这个定义若从系统方面着想,似乎毫无毛病。可是读的时候,免不了把“读成“蕴涵”;读成“蕴涵”的时候,免不了把它视为普通语言中的蕴涵;把它视为普通语言中的蕴涵,我们就免不了感觉它是一离奇古怪的蕴涵。但是把它当作普通语言中的蕴涵,就是把这个定义当作命题看待。何以呢?因为如果我们把视为普通语言中的“蕴涵”,我们就发生疑问有没有普通“蕴涵”所有的意义呢?普通“蕴涵”有没有的意义呢?这些问题发生之后,我们难免牵扯到真假问题,牵扯到真假问题,就是把定义视为命题了。

这样心理上不一致的情形不仅批评家难免,即作家也难免。好在近十几年来研究逻辑的结果,大多数逻辑家简直不知道或说不出所谓“普通蕴涵”者的意义何在;所以对于早已承认其为一种蕴涵。但这不过是对于的特殊情形而已,普通心理上不一致的情形总得要减少才行。

d. 系统中的定义不在系统所要表示的实质范围之内。有了以上的讨论,这句话似乎不至于发生若何重大的问题。这里所谓实质有两方面的情形,我们似乎不能不分别提出。

(一)系统所要表示的实质。逻辑系统所要表示的实质是“必然”。逻辑系统之所以为逻辑系统者,就因为它所要表示的实质是“必然”。在此处我们用不着提出逻辑系统的数目问题。这个数目是“一”也好,是“多”也好,是“无量”也好;无论如何,如果一个系统是逻辑系统,它所要表示的实质是“必然”。定义无所谓“必然”。在真假二分法范围之内,所谓“必然”者是不能不真;定义既无所谓真假,当然也就无所谓“必然”与“不必然”。定义既无所谓“必然”与“不必然”,当然不在逻辑系统所要表示的实质范围之内。

(二)系统所引以为表示工具的实质。一系统所引以为表示它所要表示的实质的工具就是那一系统的原子,那一系统的运算或关系,与那一系统的基本命题。这个可以总称为系统的干部。系统的干部似乎不能不算是系统范围之内的分子。干部之内情形不一致。基本命题可以是必然的命题,所以它们也可以是系统所要表示的实质。基本概念无所谓必然与不必然,所以它们不是系统所要表示的实质;可是它们虽不是系统所要表示的实质,它们是一系统所引以为表示实质的工具。我们可以说它们是工具方面的实质,不是意义方面的实质。逻辑系统不能离开它所有的工具方面的实质。一系统之所以自别于其他系统者,就因为有它所有的工具方面的实质。一系统的定义既不是一系统所要表示的实质,也不是一系统工具方面的实质,所以它不能在系统范围之内。

(三)定义何以不是系统的工具呢?上面已经说过一系统不能离开它的基本概念。基本概念是思想,不仅是名词,所以它们是系统的工具。定义所介绍的不是新思想,是新名词。新名词所表示的思想系统中已经有了;不过以系统中所有的名词或符号去表示新名词或符号所表示的思想,太复杂、太麻烦、太不便利而已。但复杂、麻烦、便利等等问题都不是系统的实质的问题。如果我们不嫌复杂、不怕麻烦,一系统可以不利用定义而仍不失其为逻辑系统。系统中的定义可以视为系统的注解,不在系统的实质范围之内。

2. 系统的前提。所谓前提与推论方式不同。前提是结论的根据,而推论方式是推论的根据。我们可以说前提是结论的前提,而推论方式是推论的“前提”。这种话是有毛病的。可是如果我们能够利用这种话以传达意见,我们也就不妨利用。如果前提真,推论对,结论才真;前提假,推论对,结论亦假。如果推论不对,无论前提是真是假,而所谓“结论”者根本就不是结论。从结论方面着想,我们可以说结论的真或假根据于前提,而结论的对或不对根据于推论方式。

a. 在普通生活中,前提与推论方式常常是两件事。例如:

(甲)所有的河北人都是中国人,

所有的北平人都是河北人,

所以所有的北平人都是中国人。

(乙)所有的日本人都是德国人,

所有的东京人都是日本人,

所以所有的东京人都是德国人。

以上两例的结论均对。但通常我们以为(甲)的结论为真,而(乙)的结论为假。这里前提也有,推论也有,结论也有,可是前提与结论都写出来了,而推论没有写出来。(甲)(乙)两例有两套前提,可是它们只有一种推论。在日常生活中,前提不是推论,它们是两件事。通常所谓“合乎逻辑”不是说前提一定真,或结论一定真,是说推论对。推论对就“合乎逻辑”,不对就“不合乎逻辑”。所谓逻辑不谈真假,而谈对与不对者在此。

b. 在逻辑系统里的情形与日常生活中的情形有时不一样。此处所谓逻辑系统是自足的系统,不自足的系统的情形另外。在自足的逻辑系统中,基本命题可以既是前提又是推论方式。有时我们可以分清楚,基本命题之中,某一命题为前提,某一命题为推论方式,有时不能,或不容易。例如P. M.( 1910年版)的基本命题中有“├”符号者似乎可以说是前提,无“├”符号者似乎是推论的方式。它们的分别可以说是很清楚。但以后应用起来,系统的前提也可以成为推论的方式。例如”;这是一个基本命题,可以说是P. M.的前提之一。但以后证例之中有把“~p”代表“p”的办法,因得以下的命题。此办法之所以说得通者,因为是一普遍的命题,“p”既代表任何命题,它当然可以代表“~p”。不过是的例而已。这样一来,前提变成了一推论的方式,只要承认此方式,在此方式之下的例也就不得不承认了。所以P. M. 的基本命题既是前提又是推论的方式,前提与推论的方式变成一件事了。

c. 其所以有以上情形者就是因为P. M. 是自足的系统。不自足的系统,可以仅有前提而无推论方式,因为不自足的逻辑系统可以假设一个另外的逻辑系统供给它的推论方式。例如布尔的逻辑系统,它就没有成文的推论方式。它假设另外的逻辑系统供给它所需用的推论方式。自足的逻辑系统则不然。它不仅要供给它本身的前提,也要供给它本身所要的推论方式。它既是自足的系统,它就不能假设另外的逻辑系统供给它本身所需用的推论方式。同时在系统方面,我们虽然不能说所引用的工具愈少愈好,但总得要经济才行。为达到自足系统的目的起见,我们只能想法把一物两用。此所以基本命题之中有些既是前提又是推论的方式。

d. 系统的前提与普通辩论中的前提不同。逻辑系统中的前提与普通系统中的前提也不同。普通辩论中的前提,大都是持之者信以为真,究竟是真是假,颇不易说。此真假问题,有时在辩论范围之内,有时在辩论范围之外。这要看辩论者所注重的是事实还是理论,是知识还是逻辑。演绎系统的前提持之者虽大都信以为真,而不必信以为真,至少他不必信他能证明或证实其为真。他所注重的是由他的系统所承认的前提所推出来的命题彼此关联一系统;能应用固好,不能应用,而系统之为系统,仍有它的立场。逻辑系统的前提又与普通演绎系统的前提不同。逻辑系统所要表示的是“必然”,它的前提最好也要是表示“必然”的命题。此处说“最好”者,因为此目的究竟能够完全达到与否,颇不敢说。无论如何,在P. M. 的基本命题中,前此已经说过,有“├”符号的命题都是“必然”的命题。由此种“必然”的前提,根据“必然”的推论,我们可以得“必然”的结论。逻辑系统中的非基本命题的命题都是由基本命题,用合法的方法而产生的命题。如果这些命题既都是“必然”的命题,这些结论的前提也得要是“必然”的命题。

e. 推论不是推论方式的结论。结论是由前提遵推论的方式,而得到的命题。结论是所得到的命题,不是得到那命题的程序。结论可以是普通的或特殊的命题。推论总是特殊的,同时也不是命题,而是一种“动作”。前此已经讨论过“蕴涵”与“所以”的分别。“蕴涵”可以成一串无量的链子,而“所以”可以说是打断那一串链子的动作。在任何一由前提到结论的程序中,每一推论都是引用推论方式的一个特殊表现。我们不能有引用推论方式的普遍方式,因为如果有那种普遍方式,它就是推论方式。那就是说,这种普遍的引用方式与在此方式之下的引用动作,二者之间有推论方式与推论动作之间的同样的问题。推论方式与推论动作二者之间其关系是直接的、无媒介的、间断的。这种间断清形似乎无法消灭。我们要弄出一引用推论方式的普遍方式,无非是想把这间断的情形消灭下去,但这种引用推论方式的普遍方式与在此方式之下的引用动作二者之间,其关系仍是直接的、无媒介的、间断的。既然如此,与其想方设法消灭这种间断的情形,而终于失败,不如直截了当地承认此间断的情形。

f. 兹将“”表示无间断的蕴涵关系,以↓表示有间断的推论,我们可以有以下的表示:

在演绎方面,我们由p而得q的结论,既要“”,也要“↓”。若仅有“”,q不是结论;仅有↓”,q也不是结论。兹用以下二例表示一命题的两种用法。

甲例中的第(1)命题即乙例中的第(1)命题,可是此命题在甲例中是前提,而在乙例中不是前提。甲例中的第(9)命题即乙例中的第(2)命题,可是此命题在甲例中是结论,而在乙例中不是结论。P. M. 中最初的推论是乙例的推论;如果只有乙例的推论,所得的命题就很有限了。除此以外,尚有甲例那样的推论。其所以说甲例那样的推论者,因为甲例在此处完全是例,不是P. M. 系统中抄下来的;它把P. M. 系统中成文的秩序变更,表示以乙例中的(1)命题为前提,用不同的推论方式,可以得乙例中的第二命题为结论。甲乙两例不过表示这一基本命题可以用为前提,也可以用为推论的方式。

3. 基本命题的条件。基本命题的条件大都有三:a. 够用;b. 独立;c. 一致。这三个条件此前已经提及。现在稍微详细一点地说说。基本命题之能满足此三条件与否,似乎只能表示或证实而不能证明。这个问题似乎是系统范围之外的问题,而不是系统范围之内的问题。我们似乎不能以一系统范围之内的方法证明那一系统的基本命题满足这三个条件。兹特分别提出,但讨论从略。

a. 够用问题。够用与不够用的问题,当然要看一系统所要达到的目的是什么。所谓目的就是得到所要得到的命题。如果所要得到的命题都能发现于一系统之中,而一系统的命题又均是基本命题所推论出来的命题,则那一系统的基本命题为够用,反之则不够用。这差不多可以说特别地注重“量”的问题。

够用与不够用的问题非常之重要,但我们的答案似乎只能根据于实验。我们似乎只能先用几个基本命题去试试,看它们够用不够用。如果够用,我们再求简单、一致、对称,等等;如果不够用,我们只能想法子找出不够用的理由何在,加上所需要的基本命题。我们似乎没有旁的方法表示基本命题的够用与否。同时如果基本命题不够用,系统就不包含所要包含的命题,那么,目的就没有达到;目的既未达到,则系统为失败的系统,而基本命题没有尽它们的职责。因此这问题的重要可以看见,一方面我们似乎没有简单的方法或可以知道基本命题的够用与否,另一方面,假设基本命题不够用,根据它们的那一整个的系统就是失败的系统。

b. 独立问题。独立问题从根本上说是一“简单”问题。此前已经说过,所谓命题的独立者不过是命题彼此不相等或者彼此不相蕴涵而已。设在(甲)(乙)两基本命题之中,(甲)蕴涵(乙),则(乙)用不着列为基本命题,因为它们可由(甲)推论出来。这当然就是使基本命题不要重复,而不要重复的结果就是简单。

(一)简单可以有两方面的解释。一是基本思想与基本命题的数目方面的简单。从这一方面着想,数目愈小愈简单。一是从证明的历程方面着想。从这一方面着想,基本思想与基本命题的数目小的时候,证明的历程或者反因之复杂。这两方面的简单虽不必冲突而有时事实上免不了冲突。设有冲突的情形,为双方并顾起见,我们似乎可以说基本思想与基本命题的数目以小到证明的历程不因之而复杂的程度为限。

(二)命题的独立与否,也不是证明的问题,而是表示或证实的问题。这个问题比够用与不够用的问题似乎简单,因为它似乎有一种已经承认的方法。此方法即利用各种不同的事实以之为基本命题之解释。设有五个基本命题,如以一种事实上的解释,第一命题能说得通,或是真的,而其余四个命题都是假的,则第一命题对于其余四个命题为独立。分别引用同样方法于其余四命题,我们可以分别地表示其余的命题是否独立。独立与否的问题既是一表示的问题而不是证明的问题,或者等到系统发展到相当程度的时候,我们有时不免发现前此所认为独立的命题并不独立。

c. 一致问题。表示命题的独立与否的那一办法,似乎假设事实的全体不能容纳于一整个系统范围之内。表示命题的一致与否,似乎又假设事实无矛盾。关于一致,理论与事实的分别似乎极其重要。这一条件的满足与否也不是系统范围之内的问题。我们不能以系统之内的方法证明基本命题的一致,结果也就是以系统范围之外的方法表示它们一致。

(一)何以不能用系统范围之内的方法呢?所谓一致者即无矛盾,空泛一点地说,即无冲突。如果我们要证明一系统一致,就是要证明那一系统没有矛盾。这件事似乎办不到。要证明一系统没有矛盾,实在是证明一系统,即无量地推进,亦不至于有矛盾。在自足的逻辑系统,那一系统之外的证明方法与那一系统不相干,而那一系统内的证明方法也只能表示那一系统发展到某种程度的时候没有矛盾,而不容易证明那一系统发展到任何程度亦不至于有矛盾。至少从前有这样的思想,现在是否如此,则不敢说。此问题引出来的问题太大而且太多,此处不敢也不能提出讨论。

(二)无论如何,基本命题之是否一致,不能在系统发展以后才表示。在系统未发展以前既要表示,自然不能引那一系统的证明方法去证明它的基本命题一致。结果我们还是利用系统之外的方法来表示。普通引用的方法似乎是拿出系统通式的基本命题通式,加以事实方面的解释,如果在事实上照这个解释,基本命题都是真的,则这些基本命题是一致的。

关于独立那一条件,我们所用的办法,假设事实的全体不能容纳于一系统范围之内;对于一致这一条件,我们所用的办法,假设事实无不融洽。这两假设是否说得过去,在逻辑系统范围之内可以不理。且前一假设影响于知识论,后一假设似乎是各种科学所必具的假设。

以上三条件是大家认为基本命题所要满足的条件,而此三条件之满足与否,似乎都只能以系统以外的方法表示而不能以系统之内的方法证明。