第六章 运动——力量与荣耀2(1 / 1)

虽然肌球蛋白消耗ATP的速度决定了肌肉收缩的速度,但是肌肉要停止收缩不等于要耗尽所有的ATP,否则我们每次去健身房,肌肉大概都会变得像僵尸一样,需要被抬回家。事实上,我们的肌肉是会疲劳的,这似乎是为了避免僵直而产生的适应能力。决定肌肉开始和结束收缩的是细胞里面的钙离子浓度,也正是这些离子,把肌肉收缩和伽伐尼的动物电流串联在一起。当一个神经脉冲传过来时,会很迅速地沿着微管网络扩散,并把钙离子释放到细胞里面。接下来发生一连串的步骤我们不必在意,总之最后钙离子会让肌动蛋白纤维与横桥的结合点打开,这样一来,肌肉就可以开始收缩。不久之后,细胞里面充满了钙离子,钙离子通道就会关闭,然后离子泵开始运作,把所有的钙离子打到细胞外面,以便让细胞回到初始的待命状态,准备迎接下一次任务。等到细胞里的钙离子浓度降低,肌动蛋白纤维上的结合点就会关闭,摇摆的横桥就无法与之结合,肌肉收缩因此中止。具有弹性的肌节很快就会回复到原本的放松状态。

当然这个描述其实极度简化了肌肉运作的机制,简化到了近乎荒谬的地步。随便翻开任何一本教科书,你都可以找到一页又一页的详细描述,一个蛋白质接着一个蛋白质,每一个都有精细的结构或调节功能。肌肉生化学的复杂程度相当吓人,但是潜藏在背后的原理极度简单。这一简单原理并不只是帮助我们了解肌肉的工作方式,事实上,也是复杂生物进化的核心。在每一个不同物种身上的不同组织中,调控肌球蛋白与肌动蛋白结合的方式各不相同。生化细节上的差异,宛如巴洛克教堂上面的洛可可风装饰,每一座教堂单独来看,其装饰繁复,都让教堂显得极其独特精致,但是它们都是巴洛克教堂。同样,即使各种肌肉的功能在细节差异上有如洛可可风装饰,但是肌球蛋白还是接在肌动蛋白上面,而且永远都接在同一个位置,而ATP则一直扮演推动纤维滑动的角色。

比如对于平滑肌来说,它让括约肌与动脉收缩的能力,曾经让鲍曼和他维多利亚时代的同行感到非常困惑。平滑肌虽然没有骨骼肌的横纹,但仍是靠肌动蛋白与肌球蛋白收缩。平滑肌的纤维排列极为松散不具备明显的秩序。其肌动蛋白与肌球蛋白的作用机制也相对简单,钙离子流会直接刺激肌球蛋白的头部,而不必绕那些骨骼肌里的远路。但是在其他方面,平滑肌和骨骼肌收缩的方式则非常类似,两者都是靠肌球蛋白与肌动蛋白结合来收缩,一样的循环,且都依赖ATP提供能量。

平滑肌这种简化的收缩版本,暗示了它有可能是骨骼肌进化路上的前辈。平滑肌就算缺少复杂的显微结构,仍是有收缩功能的组织。然而根据不同物种肌肉蛋白质的研究结果显示,肌肉的进化没我们想的那么简单。日本国立遗传学研究所的两位遗传学家斋藤成也与太田聪做过一项严谨的研究,结果显示哺乳动物骨骼肌里面的蛋白质和昆虫用来飞行的横纹肌蛋白质极为相似,暗示两者必定是从脊椎动物和无脊椎动物的共祖身上继承来的,这个共祖大概出现在6亿年前。这个共祖就算还没有骨骼,也必定进化出横纹肌了。而平滑肌情况差不多,也可以追溯到相同的共祖身上。所以平滑肌并不是复杂横纹肌的进化前身,它们两者走的是不同的进化路线。

这是一个值得注意的事实。我们身上骨骼肌里的肌球蛋白和在家里面四处乱飞的苍蝇所用肌球蛋白关系十分亲近,比那些控制你消化道的括约肌里的肌球蛋白还要亲。更惊人的是,横纹肌与平滑肌分家的历史还可以追溯到更久以前,可以早到对称动物出现之前(脊椎动物和昆虫都是对称动物)。水母似乎也有和人类类似的横纹肌肉。所以尽管横纹肌和平滑肌都利用类似的肌球蛋白与肌动蛋白系统,但是这两个系统,似乎是从同一个既有平滑肌又有横纹肌的共祖身上,独立进化出来的。这个共祖属于最早出现的动物之一,在那个时候水母大概就算是进化创作的巅峰了。

尽管横纹肌与平滑肌的进化历史超出预期,但是可以确定的是,众多变化万千的肌球蛋白都有同一个共祖。它们的基本结构都一样,都会和肌动蛋白以及ATP结合,而且结合在相同的位置上。它们也都执行一样的机械循环。如果说横纹肌和平滑肌的肌球蛋白来自相同的共祖,那么这个共祖应该比水母还原始,它可能既没有平滑肌也没有横纹肌,但是已经有肌动蛋白和肌球蛋白,只不过被拿来做别的事。会用来做什么呢?答案其实一点也不新鲜,早在20世纪60年代就已经被发现了,而且源自一个意外。尽管这个发现算是老古董,然而在生物学里很少有发现可以像它这样有远见,一下子就为肌肉的进化历史打开一扇大窗。它是赫胥黎通过电子显微镜发现的,肌球蛋白的头可以“装饰”到肌动蛋白纤维上。下面让我解释得详细一点。

各类肌肉纤维都可以被提取出来,然后分解为子单元。以肌球蛋白为例,它的头可以和尾巴分开,然后在试管里和肌动蛋白结合。而肌动蛋白呢,只要放在适当的环境中,它会很快地结合成长条纤维,聚集是肌动蛋白的天性。肌球蛋白的头会接到肌动蛋白纤维上,就如同在肌肉里一样。这些头排列在肌动蛋白纤维上宛如一个个小箭头,而且所有箭头都朝向一个方向,表示肌动蛋白具有极性。肌动蛋白只会用一种方式组合,而肌球蛋白永远只会接在同一个方向上,这样才能产生力量。(在肌节里,肌动蛋白聚合方向会在中线处反过来,让两边往中间拉,一整段肌节成为一个收缩单位。每一个相邻的肌节收缩,结果造成肌肉整体收缩。)

这些小箭头只会接在肌动蛋白纤维上,完全不会与其他蛋白质作用,因此我们可以在其他细胞里加入肌球蛋白的头,用来检验是否含有肌动蛋白。在20世纪60年代以前,所有人都假设肌动蛋白是肌肉特有的蛋白质,可以存在于不同物种的肌肉细胞里,但是不可能出现在其他细胞中。然而生化学的研究结果挑战了这一常识,因为研究发现最不可能有肌肉的生物,也就是我们用来烘焙的酵母菌,也可能含有肌动蛋白。用肌球蛋白的头去找肌动蛋白纤维这样一个简单实验,像打开了潘多拉的盒子一样揭露了许多真相。赫胥黎是第一个打开它的人,他从黏菌中提取出肌动蛋白,然后加入兔子的肌球蛋白,结果发现两者可以完美结合。

肌动蛋白无所不在。所有复杂细胞里面都有肌动蛋白构成的骨架,称为细胞骨架(见图6.3)。我们体内所有的细胞,动物、植物、真菌、藻类、原虫等,全部都有肌动蛋白构成的细胞骨架。从兔子肌球蛋白可以和黏菌肌动蛋白结合这件事可以看出,不同物种差异极大的细胞中,肌动蛋白纤维的构造非常相似。该结论正确,却也很令人不解。如今我们知道,酵母菌和人类肌动蛋白的基因相似度高达95%。[5]从这一事实来看,肌肉的进化变得非常不同。用来推动我们肌肉的纤维,其实也可以用来推动微小世界里所有的复杂细胞。它们真正的差异在于组织形式不同。

我很喜欢音乐中的变奏曲。据说有一次年轻的贝多芬在莫扎特面前表演,莫扎特听完之后,对他的演奏反应平平,但对他的即兴创作能力表示欣赏——他可以将一个简单的主旋律,变幻出无尽的曲调与节奏各异的版本。随后,该技巧让贝多芬创造出伟大的《迪亚贝利变奏曲》。贝多芬变奏曲的形式其实非常严谨,就如同在他之前巴赫的《哥德堡变奏曲》一样。他会维持基本的旋律不变,让整个作品可以立即辨认出来是一个整体。贝多芬之后,这种手法往往被作曲家丢弃,以便能够专注表达作曲家的情绪与想法,使作品缺乏数学的严谨。这让前人的作品听上去,隐藏着许多的细致差别,所有的可能性都被填满,作品的潜力发挥到极致。

音乐上既要求主旋律变幻出无限可能,又要求严格保持各结构组成的一致性,其实和生物学很像。比如说,肌球蛋白与肌动蛋白组成的这个主旋律,通过自然进化无止境的想象力,也产生了无限的变化,在结构和功能上都发挥得淋漓尽致。任何一个复杂细胞的内在小世界,都可以见证这些不平凡机构的严谨变奏。

图6.3 图为经过染色的牛肺动脉内皮细胞。细胞骨架主要由微管、微丝和中间纤维构成。

马达蛋白和细胞骨架微丝之间的交互作用,担负着让整个复杂细胞世界动起来的重大责任,不管在细胞里面或外面。许多细胞都可以在坚硬的表面上轻松滑行,完全不需要费力挥舞四肢或扭动身躯。还有一些细胞会形成伪足,可以延伸出去拖着细胞移动,或者用来捕捉猎物,然后吞入体内。此外还有细胞拥有纤毛或鞭毛,它们规律的扭动可以驱动细胞四处游走。在细胞内部,细胞质会产生漩涡,不断地将内含物运至四处。在这个小小世界中,像线粒体这样的巨大物体会横冲直撞,而染色体们则跳着它们的加沃特舞曲,然后慢慢各自退场。之后细胞中间位置开始收缩隔开,最终一分为二。所有这一切运动都仰赖细胞里面的分子工具,而肌动蛋白与肌球蛋白正是其中最重要的组成元素。而这一切运动只不过是相同旋律的各种变奏曲而已。

想象一下把自己缩小到ATP分子的大小,这样细胞看起来就像一座未来城市。用力伸长脖子四下看看,能看多远就看多远,你会发现这里到处都是让人头晕目眩的一排排缆线,这些缆线还又接着更多的缆线。有些缆线看起来脆弱又纤细,有些看起来十分粗壮。在这座细胞城市中,重力一点意义也没有,黏度才主宰一切,原子在四处随意碰撞。你可以试试在这里移动,你将会发现自己好像陷在一团浓稠的蜂蜜里一般动弹不得。忽然间,从这个纷乱的城市里冒出一台很特别的机器,像一对机械手交替运动,以缆线为轨道急速爬行。跟在后面的则是一个巨大笨重的东西,被这对手臂拖着飞驰而来。如果你碰巧站在路中间的话,可能会以为自己要被一座飞行发电厂撞上了。不过事实上也没错,这个疾驰而来的东西就是线粒体,它正要赶往城市的另一端去执行发电任务。现在再往四处看看,其实还有好多东西也都朝同一个方向移动,有些快有些慢,但是所有东西的共通处就是都被相同的机器拖着,沿着横跨四处的缆线移动。接着,在线粒体通过之后的一瞬间,你会觉得自己被一阵涡流刮走,你会跟着打转。这阵涡流搅拌着细胞里面的所有东西,被称为胞质环流。

这是从纳米科技的角度,去看一个我们平常从来没有想过的复杂世界。当然在这个怪诞的未来城市中,仍然有些东西是我们熟知的。我刚刚所描述的景象很可能就是你身体里面的某个细胞,当然也可能是一个植物细胞、一个真菌,或者是一个在你家附近池塘里游泳的单细胞原虫。在细胞的世界里面有一种惊人的共通性,让我们觉得周围的一切是如此相似,似乎都是相互关联的同类。从细胞的角度来看,你只是整个身体建造计划中的众多变异之一,只不过是用许多相似的积木,搭建同一物品的众多拼法之一。但这积木多了不起呀!每个喧闹的真核细胞迷你城市(真核细胞是带有核的复杂细胞,请见第四章),都和简单的细菌内部世界有极大的差异。这差异绝大部分要归功于大量的细胞骨架,以及四通八达的交通系统持续把细胞内的物质送往迎来。如果没有这些夜以继日运作的交通系统,所有的细胞城市将会瘫痪,就好像我们的大城市缺少主要干道一样。

所有细胞里面的交通都源自各式大同小异的马达蛋白。首先该提的就是那个在肌动蛋白纤维上跳上跳下的肌球蛋白,和它在肌肉里的运作方式一样。不过差异就是,在肌肉里肌球蛋白有90%的时间与肌动蛋白纤维分开,如果它们不这样做,而是持续不断地粘在纤维上的话,就会严重阻碍其他摇摆中的肌球蛋白横桥,就像在一艘长船上其中一位桨手故意不把桨抬离水面一样。在肌肉里可以如此长时间分离,因为肌球蛋白的尾巴会缠绕成粗肌丝,从而把肌球蛋白的头部拴在非常靠近肌动蛋白的地方。但是对于那些横跨细胞的各种缆线来说,可不能这样,因为一旦马达蛋白与缆线分开之后,它就会被撞飞,很难重新抓住缆线(不过在某些情况下,电力的交互作用可以把马达蛋白拴在离缆线不远处)。

比较好的解决办法是发展出一种“前进式”马达,一边接在缆线上,一边在缆线上移动(前进)。而蛋白质也这样做了,稍微改变一下肌球蛋白的结构,就可以把自己变成一个前进马达,可以稍微离开肌动蛋白纤维却又不至于完全分开。有哪些改变了呢?首先是肌球蛋白的头颈部要稍微延长一点。还记得在肌肉里面,两个肌球蛋白头部会紧紧靠在一起吗?那是因为从颈部到尾部都被缠住,但是除此之外这两个头部其实没有什么合作关系。现在我们稍微把颈部延长一些,让两个蛋白质头部不再靠那么紧,而多一点自由空间。这样一来,当一个头部粘在纤维上时,还有一个可以摇摆,因而造就了一种“手牵手”一步一步在纤维上移动的前进马达。[6]还有其他的变异版本,包含三个甚至四个头部连在一起。当然不论是哪一种变异版本,这些肌球蛋白头部都不会缠在粗肌丝纤维上,而是可以四处移动。最后,其他东西都可以通过“耦合”蛋白接在这些马达上,每种东西有专门的耦合蛋白。如此就有了一群前进马达,可以把细胞里的东西沿着肌动蛋白轨道运往四处。

这一群了不起的蛋白质是怎么出现的?在细菌世界里并没有可以相比的东西。不过,肌球蛋白配肌动蛋白也不是真核细胞里面唯一的双人配对工具。另一组马达蛋白叫作驱动蛋白,它作用的方法和肌球蛋白差不多,也是用手牵手的方式在那些横跨的细胞骨架上移动。不过驱动蛋白所对应的缆线并非肌动蛋白纤维,而是一条充满孔洞的管子,称作微管,其蛋白质单元称为微管蛋白。微管的工作很多,其中一项就是在细胞分裂的时候形成纺锤体,把染色体拉开。当然还有其他几种马达蛋白,不过我们无须继续花时间讨论。

所有马达蛋白与它们的高架轨道,其实在细菌里面都有雏形,不过不是那么显而易见,因为它们负责的工作不同。[7]X射线晶体学再度帮我们厘清这些蛋白质间的血缘关系,而如果只靠比对基因序列,恐怕永远也鉴别不出来。

肌球蛋白与驱动蛋白这两种最主要的马达蛋白,从基因序列上面来看,几乎没有相似之处。其中某些序列或许相同,但是长久以来科学家都认为那只是巧合或趋同进化的结果。确实驱动蛋白和肌球蛋白看起来很像典型的趋同进化产物,也就是说,两个本来毫无关联的蛋白质因为负责类似的工作,结果慢慢特化发展出类似的结构。就好像蝙蝠和鸟,也是为了适应飞行,各自独立发展出翅膀。

后来,X射线晶体学解开了两个蛋白质的三维立体结构。基因序列告诉我们的是二维的线性字母序列,如同歌词但是没有音乐。晶体学给我们展示的是蛋白质的三维空间结构,就好像完整的歌剧。德国音乐大师瓦格纳曾说过:(歌剧的)音乐应当去配合歌词的要求,而不应让歌词来将就音乐。但是现在不会有人因为那些日耳曼式歌词而记得瓦格纳,流传下来的反而是他的音乐,启发了后代的音乐家。同样,基因序列就是大自然的文字,而真正的蛋白质音乐却藏在它的形状之中。是蛋白质的形状通过自然进化的考验,才能存活下来。自然进化才不管基因序列,自然进化在乎的是功能。虽然说基因决定功能,但是功能却必须用一套我们还不清楚的蛋白质折叠规则,把蛋白质折出特定形状才能执行。因此,很多基因有可能因为分异太久太远,以至于在序列上完全没有相似性,这就是肌球蛋白和驱动蛋白。但是藏在蛋白质深处的音乐还在,有待晶体学来揭露。

根据晶体学,我们现在知道肌球蛋白与驱动蛋白,尽管基因序列差异甚大,但确实来自共同祖先。从它们的三维结构来看,许多蛋白质折叠法与结构都相同,许多关键点的氨基酸也都被保存下来,在空间上朝向同一个方向。这是进化的不可思议之处,经过好几十亿年,尽管蛋白质的成分甚至是基因序列都被时光改得面目全非,但是相同的模式、相同的形状、占据相同的空间——这一切细节却从原子等级上被保留下来。这些形状上的相似性清楚地指出,肌球蛋白和驱动蛋白是来自细菌祖先里的一个蛋白质大家族[8]。这些祖先确实也从事某种和运动或力量有关的工作(它们今天还是做同样的工作),比如说从一个构型转换成另一个构型,但是没有一个细菌蛋白质有移动能力。X射线晶体学让我们看清蛋白质骨架,如同X射线让我们看清鸟类的翅膀结构一样。就像翅膀祖先的骨骼与关节结构清楚地指出它们来自没有飞行能力的爬行类前肢,马达蛋白的结构也清楚地显示它们来自可以变化形状,但还没有移动能力的蛋白质祖先。

晶体学研究也告诉我们细胞骨架进化有趣的一面。这些由肌动蛋白和微管蛋白所组成、高悬于四处的缆线十分让人费解。你一定想问,为什么细胞会想要进化出这些高架缆线或马达蛋白的快速道路?一开始还没有这些蛋白质汽车呀,这岂不本末倒置?其实不然,因为细胞骨架本身自有用处。它们的价值来自它们的形状。所有真核细胞的形状,从细长的神经细胞到扁平的内皮细胞,都靠这些细胞骨架微丝来维持。而后来我们发现细菌也差不多。长久以来生物学家都认为细菌的各种形状(杆菌、螺旋菌、弧菌等),是因为它们有坚硬的细胞壁。因此后来在20世纪90年代中发现细菌也有细胞骨架时,着实让大家吃了一惊。这些骨架由类似肌动蛋白与微管蛋白的细纤维构成,可以帮助细菌维持各种精巧的形状。(如果让这些细胞骨架突变的话,原本形状复杂的细菌就会成为最简单的球状。)

就像刚刚提过的马达蛋白一样,细菌与真核细胞的骨架蛋白在基因上也很少有相似处。不过在世纪交替之际,科学家利用晶体学,解出细菌骨架的三维立体结构,结果比马达蛋白的更让人吃惊。细菌与真核细胞的骨架蛋白质,在结构上可以完全重叠,它们有一样的形状,占据相等的空间,在少数关键位置上的关键氨基酸完全相同。很明显,真核细胞的骨架来自细菌的同类蛋白质,形状与功能都被保存下来。两者如今在维持细胞形状上都十分重要,而且功能的相似不止于此。这些骨架与我们坚硬的骨骼不同,它们具有动力而且随时自我重组,如同捉摸不定的云,会在暴风雨天忽然聚集成群。它们可以施展力量,移动染色体,可以在细胞分裂时把细胞一分为二。此外,在真核细胞里它们还可以帮助细胞移动,完全不用借助任何马达蛋白。换句话说,细胞骨架自己就可以运动,这是如何办到的?

肌动蛋白纤维和微管蛋白纤维都是由重复的蛋白质子单元自动接成一条长链,或称为聚合物。这种分子聚合能力并不罕见,像塑料也是由简单的基本单元不断重复,组合成一条永无止境的分子长链。细胞骨架稀奇的地方在于,这些结构在新加入的单元和分解出来的单元之间存在一种动态平衡,不断有新的单元接上去,旧的单元解下来,永无休止。结果就是细胞骨架永远在自我重组,堆起来再拆开。神奇的地方在于,这些新单元永远只能接到一端上(它们堆起来的方式很像乐高积木,或者更像一叠羽毛球),然后只能从另一端分解。这种性质让细胞骨架产生推力,下面我来详细解释。

如果这条纤维从一端加入和从另一端分解的速度一样的话,那么这个聚合纤维的整体长度就不会变,但在这种情况下,纤维看起来像是往添加单元的方向移动。如果碰巧有物体挡在路中间的话,那这个物体就会被往前推。不过事实上,这个物体并不是被纤维推动的,这个物体其实是被周围自由运动的分子随意推挤,然后每次推挤,都会在物体和纤维顶端之间产生一点小空隙,如此一来,新的纤维单元就可以挤进来结合上去。通过这种方法,生长中的纤维可以阻止物体被推回来,因此整体来说是那些随意推挤的力量把物体往前推。

或许这种运动最明显的实例,就是当细胞受到细菌感染,骨架系统被搞乱的时候。比如说造成新生儿脑膜炎的李斯特菌,会分泌两到三种蛋白质,合在一起劫持细胞的骨架系统。如此一来,细菌就可以在被感染的细胞里面四处游走,在细菌后面就有好几条不断合成又分解的肌动蛋白纤维在推动,让细菌看起来像带着尾巴的彗星。一般认为当细菌分裂时,染色体和质粒(细菌的环状DNA)分开的过程也会发生这种运动。类似的过程也在变形虫体内发生(同时也会在我们的免疫细胞比如巨噬细胞体内发生)。细胞所伸出的延伸结构或称伪足,也是被这种不断合成又分解的肌动蛋白纤维所推动,完全无需复杂的马达蛋白参与其中。

运动的细胞骨架听起来好像和魔术一样,但是根据美国哈佛大学的生化学家蒂姆·米奇逊的看法,这一点也不稀奇。这一切现象的背后,只是非常基本的自发性物理反应,完全无需任何复杂的进化。本来没有结构功能的蛋白质,有时候也会因为某种原因突然聚合起来形成大型细胞骨架,可能产生推力,然后又快速地分解回复到原始状态。这种现象听起来似乎十分危险,也确实在大多数的情况下是有害的。以镰刀型细胞贫血症为例,当氧气浓度低的时候,突变的血红蛋白会自动在细胞里聚合成网状结构。这种改变导致红细胞变形,让它变成镰刀状,病名由此而来。不过换句话说,这种聚合也是一种力与运动。当氧气浓度上升时,这些失常的细胞骨架会自动分解消失,让血红蛋白回复到原来的圆盘状。这也算是某种动态的细胞骨架,虽然不是很有用。[9]

很久很久以前,相同的事情一定也发生在细胞身上。肌动蛋白纤维与微管蛋白纤维的子单元,原本是其他蛋白质,在细胞里面做着其他工作。偶尔结构上面的小小改变,让它们有自动聚合成纤维的能力。这就像血红蛋白能突变一样,但是和镰刀型细胞贫血症的不同之处在于,这种变异应该有立即可见的好处,因此自然进化选择了它。这个立即可见的好处或许和运动没有直接关系,甚至没有间接关系。事实上,镰刀型血红蛋白也是在疟疾流行的地区被选择出来的,因为只有一个基因变异,才对疟疾有抵抗力。因此尽管需要忍受长远而痛苦的后果(镰刀型红细胞因为没有弹性,所以会堵塞微血管),自然进化还是把这个自发进行且不受欢迎的细胞骨架保留下来了。

所以这了不起的运动性,从最简单的源头到骨骼肌所展现的各种壮观的威力,都依赖于一小群蛋白质与它们无数的变奏曲。今天科学家要解决的问题是,剔除所有华丽的变奏曲,让最原始的主题展露出来,要找出最初最简单的合唱。该问题是现在领域里最令人兴奋却也最多争议的研究题目之一,因为最原始的曲调由所有真核细胞之母所吟唱,那是大约20亿年前的事了。想从如此遥远的时间长河中只利用回音去重组原始旋律充满了困难。我们不知道这个真核细胞祖先如何进化出运动性。我们也不知道细胞之间的合作关系(共生)是否占有决定性的作用,就像马古利斯长久以来认为的那样。或者细胞骨架是从宿主细胞现存的基因中进化出来的。有一些很有趣的谜题如果可以解开的话,应该会为我们指出一条明路。比如说当细菌分裂的时候,细菌用肌动蛋白纤维把染色体拉开,用微管把细胞拉紧,一分为二。但在真核细胞体内两者正好相反。真核细胞分裂时,拉开染色体的纺锤体由微管组成,收缩阶段拉紧细胞的是肌动蛋白纤维。如果我们可以知道这种反转如何发生,又为什么发生,那应该会对地球上生命的历史有更透彻的了解。

对于科学家来说,这些细节问题极具挑战性,而我们已经大致了解了整体图像。我们知道细胞骨架和马达蛋白,是从哪些蛋白质祖先进化而来。至于它们来自共生的细菌,或者来自宿主细胞本身,两者都有可能但关系不大。如果有朝一日我们解答了这些问题,那么现代生物学的基础就更加屹立不倒了。目前有一件事情是确定不疑,那就是如果缺乏运动的真核细胞——也就是不会四处移动、没有动态细胞骨架和马达蛋白的真核细胞,真的曾经存在的话,那么它应该早在盘古时代就灭亡了,如同它的祖先一般。所有现存真核细胞的共祖是可以运动的,这表示运动应该为细胞带来极大的好处。由此观之,运动的进化不只长远改变了生态系统的复杂性,还帮助地球改头换面,让地球从一个由细菌主宰的简单世界,变成现在我们眼前丰富多样的神奇世界。

[1]克罗尼是英国皇家学院的创始会员之一,后来以他名字命名的克罗尼讲座(年度荣誉讲座),是生物科学最重要的讲座。

[2]丘吉尔有句名言是这么说的:“创造历史最好的方法就是改写历史。”他的权威著作也为他赢得了1953年诺贝尔文学奖。上一次历史文学拿到文学奖是什么时候呢?

[3]佩鲁兹和肯德鲁两人首先解开的是抹香鲸的肌动蛋白构造。选这个蛋白质做研究似乎很怪,其实这样的选择是有原因的,因为人们知道在捕鲸船甲板上的血块与血迹中找到过这个蛋白质结晶(在深海潜水的哺乳类动物如鲸鱼的肌肉里,该蛋白的浓度非常高)。蛋白质会结晶这种特性非常重要,因为要用结晶学解析结构,样品一定要形成某种形式的结晶,或至少有重复的构造。

[4]不同的肌肉其实含有不同纤维的混合物。快缩肌纤维依赖无氧呼吸提供能量,虽然快速但是很没效率。这种肌纤维收缩很快(含较快的肌球蛋白),但是也很快疲劳。它们也不怎么需要毛细血管、线粒体或肌红蛋白,而这些都是有氧呼吸所需要的装备。缺少这些构造让肌肉呈现白色,这是白肉形成的原因。慢缩肌纤维主要分布在红肉中,依赖有氧呼吸(含较慢的肌球蛋白)。它们收缩较慢,但是也不易疲劳。

[5]这里的描述其实有点过度简化了:两者基因序列相似性只有80%,但是氨基酸序列的相似度却高达95%。造成这种现象的原因,是因为许多不同的密码都可以转译出相同的氨基酸(详见第二章)。这种差异所反映的,就是基因突变搭配上强力维持原始蛋白质序列的自然进化作用所产生的结果。看起来唯一被自然进化所允许的突变,就是那些不会改变蛋白质里氨基酸的突变。这只是另外一个告诉我们自然进化确实在作用的小例子。

[6]当然,这种改变实际上也会反过来发生:前进马达最后变成粗肌丝纤维。这或许解释了为何肌肉中的每个肌球蛋白分子仍有两个头,尽管它们似乎没有充分地协调运作。

[7]细菌也会四处移动,不过是用鞭毛,这和真核细胞不同。基本上鞭毛就像葡萄酒开瓶器的螺旋钻头,由马达蛋白质绕着轴心不停旋转驱动。细菌的鞭毛也常被用来说明“不可还原的复杂”这个概念,但是关于“不可还原”的问题已经在别的地方被反驳了,所以我就不在此赘述。(译注:“不可还原的复杂”是基督教对进化论的批评,他们主张生物某些复杂的器官完全没有简化的可能,所以不可能是进化的产物。)如果你想更深入地了解鞭毛,请参阅肯·米勒所写的《脱缰的鞭毛》,他是位卓越的生化学家,也是智能设计运动的天敌,更是位虔诚的天主教徒。对他而言,相信生命中分子的运作机制可以用进化解释,与相信神之间完全没有冲突。米勒认为智能设计论者是双重失败者,“在科学上失败,因为他们违背了事实;在信仰上失败,因为他们小看了上帝”。

[8]准确地说,它们是G蛋白,这是一大家族的蛋白转换器,负责给细胞传递信息。在细菌体内的亲戚则叫作GTP酶蛋白。这些蛋白质的名称并不重要,这里我们只要知道已经找到它们的祖先即可。

[9]另外一个一样没用的例子是牛海绵状脑病,大家比较熟悉的名称是疯牛病。疯牛病是由朊蛋白引起的传染性疾病,也就是说,蛋白质本身就是传染颗粒。这些蛋白质具有改变周围其他蛋白质形状的能力。周围的蛋白质形状一旦被改变,就会聚合在一起形成一长条纤维,也可以算是某种细胞骨骼。过去我们都认为朊蛋白只会致病,但是近来的研究却显示,有些“类朊蛋白”可能与长期记忆以及大脑里面的突触形成密切相关。