第三节 对创造性生物学研究的展望(1 / 1)

创造性心理学 林崇德 8816 字 1个月前

目前国内外对创造性生物的研究,主要是围绕着创造性的认知神经科学,这个领域非常重要,应该继续深入研究,但是还须扩大研究范围。在此我们提出三点展望,以求教国内外的同人。

一、继续深入开展创造性神经基础的研究

进入21世纪以来,世界各国相继制订了本国的脑科学计划,中国脑计划制订为15年计划(2016—2030年)。科技部、教育部、中国科学院、国家自然科学基金委员会联合印发的《“十三五”国家基础研究专项规划》将“脑科学与类脑研究”放在“十三五”期间我国将组织实施的重大科技项目的首位;而且,脑科学与类脑研究重大科技项目将围绕脑与认知、脑机智能和脑的健康3个核心问题展开。因此,创造性神经基础的研究正处于历史最好的科研环境下。

目前,虽然关于“高创造性者到底有着怎么样的脑结构和功能特征,具备什么样的脑结构功能特征的个体具有高创造性”这个双向性问题,学术界迄今还没有得到明确、清晰、一致的结论。但无论是对爱因斯坦的个案研究还是大量对正常成人的研究,也确实发现高创造性个体或是个体进行高创造性思维时,其脑结构或功能特征不同于低创造性个体或是个体进行低创造性思维时。综合文献和我们的研究,能得到的比较笼统的结论是“创造性思维与前额执行控制系统和默认网络有关”;但事实上,我们可以看到,即使是默认网络,不同的研究得到的与创造性相关的脑区也不尽相同,如有的研究发现与内侧前额叶相关(如Ellamil,Dobson,& Beeman,et al.,2012[121];Liu,Erkkinen,& Healey,et al.,2015[122];Takeuchi,Taki,& Nouch,et al.,2017[123]),有的研究发现与楔前叶相关(如Takeuchi,Taki,& Hashizume,et al.,2011[124];Jauk,Neubauer,& Dunst,et al.,2015[125];Zhu,Chen,& Xia,et al.,2017[126])。创造性思维似乎不严重地依赖于任何一个单一心理过程或是脑区,也不是特定地如单个研究发现的那样与右半球、散焦的注意、低唤醒度或是alpha同步有关。这有可能与数据积累相对较少且各研究间太大的异质性有关。近几年来,虽然创造性神经基础的研究有了极大的进展,但研究内容太分散。在研究理念上,有把创造性作为一个整体来考虑的,也有把创造性相关的认知成分分离出来考虑的。在反映创造性或是创造性思维的内容选择上,有反映领域一般性创造性的,如经典的TTCT测试;也有反映领域特殊性创造性的,如音乐创作等。而代表神经特征的指标的多样性也是实验结果难以凝练的重要原因之一。例如,有的研究考察脑功能连接的差异性,有的研究考察灰质或是白质结构的差异性等。整体上,可以认为创造性神经基础的研究还处于数据积累期,还需要更多的实证研究。特别是当前积累的数据绝大多数源于成人大学生,而30岁以后或是18岁以前个体的数据几乎是空白,今后的研究要特别注意这些年龄段数据的积累。

另一个层面,基础研究不是为研究而研究,认识脑是为了更好地开发脑和保护脑。探索创造性和脑之间的关系也是如此。虽然这一领域的数据量还是非常有限,还不能得到顶层结论,但有限的研究结果依然为我们在实践中提升个体的创造性提供了极好的启示。如前所述,各类干预或是训练方法诱发的个体创造性的提升均伴随着脑活动和功能甚至结构上的变化,这提示个体创造性的可塑性不仅仅外显地反映于行为指标上,还可以发生在其生物学基础的脑结构层面;为外因诱发的创造性行为改变的可持续性提供了物质基础。研究发现诸如即时的情节细节诱导(Madore,Addis,& Schacter,2015[127];Madore,Jing,& Schactet,2016[128])、原型启发等(如朱丹,罗俊龙,朱海雪,等,2011)[129]均可提升学生的创造性。而扮演游戏(Russ,2016)[130]、体育活动(Ben-Soussan,Glicksohn,& Goldstein,et al.,2013[131];Oppezzo & Schwartz,2014[132];Simon & Bock,2016[133])等不仅可以提升个体创造性思维还能促进身体健康,更值得在中小学阶段提倡推广。有的研究还发现操纵课堂教学环境也能有效提升学生创造性思维。他们发现,相比于无绿植无外景的课室,多绿植且可以透过大窗口看见自然风光的课室能有效提高学生视觉空间创造性,但对言语创造性的影响无差异(Studentea,Seppala,& Sadowska,2016)[134]。国内胡卫平团队(Jia,Hu,& Cai,et al.,2017)[135]的研究则直接为我们提供了提升学生创造性的教学模式,他们发现“讲授+探究式”教学方式更利于创造性问题的解决。现在的问题是研究成果如何及时地转化为教学实践。

最后,如贝尔(J.Baer,2016)[136]认为的那样,我们有必要指出,走向创造性思维和创造性行为的技能、知识、态度、动机和人格特质并不是凭空存在和发展的。它们与内容、领域紧密联系,特别是随着领域的变化而变化。我们对创造性了解得越多,越发现创造性是领域特异性的。我们不能离开内容来谈创造性的培养和教育。不同的领域要求不同的创造性相关技能、知识、态度、动机和人格,不同领域的创造性其提升方法也不相同。贝蒂等(R.E.Beaty,2014)[137]曾考察了解决经典顿悟问题和真实世界创造性成就间的相关关系,结论是:没有证据表明顿悟问题解决和创造性行为与成就间有相关关系。他们认为:如果我们想让学生学习微积分、世界史和生物学,我们假设没有某些通用的学习有助于学生学习这三门课程。我们明白这是三个不同的领域,各自需要不同的领域特异性的指导和学习,几乎没有理由期望它们之间有很多的迁移。许多的创造性训练被发现是浪费时间。因此,在现实的教育教学中融入创造性培养方案时,我们必须注意领域特异性。目前,这部分的基础研究还相当贫乏,需要更多的数据积累。

二、从认知神经科学走向情绪神经科学展开多维度的研究

情绪影响创造性认知过程的神经机制,也是未来应加强加深研究的一个方面。

情绪与创造性之间的关系是创造性领域的热点研究问题,胡卫平教授所领导的陕西师范大学“现代教学技术”教育部重点实验室(下边简称为实验室)采用行为与认知神经科学技术相结合的方法,分别从个体的创造性行为表现、情绪与创造性认知活动特有的生理机制、情绪效价以及情绪动机对创造性活动的影响作用等多个方面展开了研究,并取得了丰富的研究成果。

(一)情绪对创造性活动影响的行为学研究

情绪对个体创造性活动的影响作用首先体现在个体的创造性行为上,因此,实验室首先从行为层面展开了相关研究。研究选用较为成熟的创造性科学问题提出能力测验作为创造性任务,并对不同情绪状态下个体的绩效水平进行了评估。研究结果显示:积极情绪相比负性、中性情绪显著提升了个体在创造性问题的流畅性、灵活性维度上的表现。而在消极情绪下,恐惧(而非愤怒)会阻碍开放性问题的提出。这一发现提示,在青少年的创造性培养中,教师应注重孩子的情绪、情感状态,避免消极情绪的发生(Chen,Hu,& Plucker,2016)[138]。

(二)情绪加工的生理机制

实验室对“高焦虑者引导性认知重评异常的时程动态机制”这一课题进行了研究,采用脑电技术,证实了高焦虑者认知重评的异常可能导致其体验到普遍较高水平的负性情绪。不仅如此,研究团队进一步比较认知重评的两种子成分在情绪调节的不同阶段的时程动态特征。结果表明,分离重评与积极重评在效价、唤醒度及神经反应上具有不同的调节效应,并强调了这两种重评策略在情绪调节不同加工过程上的分离。这为后期探究高焦虑者的认知重评异常到底反映在分离重评还是积极重评上奠定了基础(Qi,Li,& Tang,et al.,2017)[139]。

(三)创造性认知加工活动的生理机制

研究团队首次提出借助认知神经科学技术,以创造性认知加工的初级过程和次级过程为线索,采用新颖性判断、远距离联想、顿悟字谜任务等改进的实验范式,通过时空二维脑机制参数,重点测查创造性相关脑区激活的时间进程与空间模式,揭示情绪影响创造性认知活动的大脑动态加工过程。现有研究结果表明:人脑对创造性新颖信息的加工过程更为复杂,图像新颖性属性的识别并未与早期知觉活动同时展开,其主要发生在涉及图像特征融合、图像记忆编码等多项认知活动参与的晚期加工阶段;个体对新颖性图像的加工存在半球右侧化效应(Wang,Duan,& Qi,et al.,2017)[140];文字创造性新颖性信息的加工则会引发出明显的N400效应,并涉及个体对冲突信息的二次语义整合以及对文字材料的理解与评价活动的参加。

(四)情绪效价对创造性认知加工活动的影响作用

来自行为与事件相关电位的研究结果共同表明,情绪对个体的创造性新颖信息加工活动发挥着显著的影响作用。具体表现为,消极情绪不利于个体对创造性新颖信息的加工,其作用方式体现在新颖信息加工过程的各个阶段(王博韬,2017)[141]。为进一步确定消极情绪状态与个体创造性活动之间的关系,实验室进一步对个体的消极情绪状态进行了区分,并采用fNIRS技术探究其认知神经机制。来自愤怒与创造性认知活动的关系研究结果表明:愤怒情绪对创造性认知过程的影响在不同阶段存在差异,具体表现为愤怒情绪在整个创造性认知过程中均降低了适宜性,但是对新颖性的影响却因阶段的不同而存在差异。具体表现为,愤怒情绪在观点产生阶段提高了新颖性,但在观点评价阶段,愤怒情绪与平静情绪下的新颖性无显著性差异(石婷婷,2017)[142]。同时,来自焦虑与创造性认知过程的研究结果表明:状态焦虑对创造性认知过程的影响在行为结果上都表现为促进新颖性,抑制适宜性。但新颖性更多地与产生阶段有关,而适宜性更多地与评价阶段有关,因此,研究结果表明,状态焦虑能够部分地促进创造性观点的产生,但对创造性评价却发挥着抑制作用(刘冰洁,2017)[143]。

(五)情绪动机对创造性认知活动的影响作用

实验室还在区分情绪效价的基础上,从情绪的动机维度入手,按照高动机趋近情绪、低动机趋近情绪、高动机回避情绪和低动机回避情绪四种情绪条件,对不同动机水平的情绪状态与个体创造性活动之间的关系进行了考察。采用远距离联想测验的研究结果发现:低动机情绪可以促进远距离联想问题的解决,与高动机情绪相比,低动机情绪能够拓展个体在语义网络中的注意广度,使远距离联想问题更容易被解决(许施阳,2016)[144]。 同时,采用创造性顿悟任务的研究表明:高动机强度的情绪阻碍了顿悟问题解决,减缓了紧组块破解的反应速度且降低了其正确率;低动机强度的情绪促进了顿悟问题解决,加快了紧组块破解的反应速度且提高了其正确率;高、低动机强度情绪状态对松组块破解任务并无显著影响(韩蒙,2016)[145]。

从胡卫平教授领导的实验室较长期积累的研究结果可以看出,情绪与个体的创造性活动之间存在着复杂而密切的关系,情绪对创造性认知活动的影响作用受到多种变量的中介与调节。未来研究将对现有研究结果进行进一步的梳理与整合,力争早日构建出情绪与创造性之间的作用关系模型,为我国创造性人才的培养提供可靠的依据。

三、开展创造性的遗传基础——基因研究

在创造性生物学基础的研究中,近十年来,创造性的遗传基础——基因研究进入了创造性心理学的视线,我们团队从事基因研究的专家朱皕教授为我提供了与创造性相关的基因研究材料,以飨读者,也作为我们对创造性的生物学基础研究的一个展望。

(一)创造性基因研究的国外最新进展综述

最早的创造性遗传研究多为家族谱系研究(例如,高尔顿1869年出版的专著《遗传天才》)或双生子研究[例如,采用同卵和异卵双生子考察创造性是否存在遗传因素(Bouchard,Lykken,& Tellegen,et al.,1993[146];Reznikofftff,Domino,& Bridges,et al.,1973[147]]。随着基因分析技术的快速发展,近几十年来国内外研究者采用候选基因分析(根据以往生理或药物研究基础,挑选一个或几个基因的位点)或采用全基因组关联分析(采用人类基因组中数百万个基因位点为分子遗传标记),考察具体哪些基因与创造性具有关联。

1.创造性思维相关的基因

近十年来,许多研究者采用候选基因的方式考察了多巴胺和五羟色胺基因与创造性思维的关系。2006年,德国研究者罗伊特(Reuter)等人,率先采用候选基因分析方法,在92名欧洲健康个体中,考察多巴胺基因和五羟色胺基因与图片创造性、言语创造性、数字创造性的关联(Reuter,Roth,& Holve,et al.,2006)[148]。该研究发现,多巴胺DRD2基因和五羟色胺TPH1基因与总体创造性具有关联,这些基因可以解释9%的创造性个体差异,而且该结果不受个体智力的影响。2011年,雅典研究者罗科(Runco)和美国研究者诺贝尔(Noble)等人重复并扩展了该项研究(Runco,Noble,& Reiter-Palmon,et al.,2011)[149]。他们采用147名美国白人大学生为被试,发现言语思维流畅性与多巴胺DAT、DRD4、COMT、DRD2基因有关,而图片思维流畅性与多巴胺COMT、DRD4基因和五羟色胺TPH1基因有关;言语发散性思维与多巴胺DAT、DRD4基因、DRD2基因有关,而图片发散性思维与多巴胺DAT、DRD4基因有关,但是在控制个体的思维流畅性水平之后,发散性思维与基因之间的关联消失;思维灵活性只与多巴胺DAT基因有关。由于该研究只发现了与思维流畅性相关基因,而没有找到与思维原创性相关的基因,所以研究者们认为未来研究需要进一步探索创造性的遗传基础。墨菲(Murphy)等人对这篇2011年的研究数据进行了重新分析,发现多巴胺基因之间的交互作用对创造性的影响(Murphy,Runco,& Acar,et al.,2013)[150]。许多研究者采用托兰斯创造性测验考察了基因与创造性思维的关系。例如,俄罗斯研究者在2009年,利用62个白种人大学生样本,发现了五羟色胺5HTTLPR基因与图片和言语创造性的关联(Volf,Kulikov,& Bort sov,2009)[151];以色列研究者2013年利用185个健康白种人样本,发现多巴胺DRD4基因与发散性思维有关(Mayseless,Uzefovsky,& Shalev,et al.,2013)[152];2016年,美国研究者利用100名健康白种人样本,发现多巴胺COMT和DAT基因及其交互作用与创造性思维的关联(Zabelina,Colzato,& Beeman,et al.,2016)[153]。

2.创造性人格相关的基因

以往与创造性相关的人格研究表明,创造性与三维人格量表测查的寻求新颖维度以及与大五人格量表的开放性维度有关(Li,Li,& Huang,et al.,2015[154];Mayseless,Uzefovsky,& Shalev,et al.,2013[155])。近二十年来,很多研究表明多巴胺DRD4基因与三维人格量表测查的寻求新颖水平有关,研究者也对其进行了元分析(Schinka,Letsch,& Crawford,2002)[156]。最近几年,随着大规模全基因组与人格关联研究的增长,全球五十多个研究单位的研究者综合多个基因数据库,采用元分析方法考察大五人格量表所测得的人格维度与全基因的关联结果(Trampush,Yang,& Yu,et al.,2017)[157]。该研究采用3万多名健康欧洲后裔人群为样本,以全基因关联数据库,发现开放性人格特质与认知能力之间有共同点基因遗传关联。

3.音乐、美术等特殊创造性天才的基因研究

研究者采用双生子和分子遗传分析方法考察了音乐、美术等特殊创造性天才的遗传力和相关基因。首先,荷兰研究者采用1 600多对青少年双生子的研究表明,音乐、美术等特殊天才的遗传力在0.50到0.93之间(Vinkhuyzen,Van der Sluis,& Posthuma,et al.,2009)[158]。其次,芬兰研究者对200多个家庭成员的全基因连锁分析发现,音乐才能与四号染色体基因有关。在候选基因研究中,以色列研究者发现**PR1A基因和SLC6A4基因与创造性舞蹈能力有关(Bachner-Melman,Dina,& Zohar,et al.,2005)[159];芬兰研究者利用300名家庭成员为样本,发现**PR1A基因与音乐能力有关(Ukkola-Vuoti,Oikkonen,& Onkamo,et al.,2011[160];Ukkola,Onkamo,& Raijas,et al.,2009[161])。近期,芬兰研究者还采用全基因组拷贝数变异分析方法利用有亲缘关系和无亲缘关系个体为样本,考察了与音乐能力和创造性相关的基因和拷贝数变异(Ukkola-Vuoti,Kanduri,& Oikkonen,et al.,2013)[162]。

4.全基因关联研究表明:创造性与精神疾病有共同的遗传基础

历史上许多高创造性人才(例如,画家梵·高、数学家纳什、作家海明威等人)都患有精神疾病,但是以往研究无法说明高创造性与精神疾病的关联是源于先天遗传还是后天环境(Keller & Visscher,2015)[163]。鲍尔(R.A.Power,2015)等人利用全基因关联分析方法,在欧洲上万人群的样本中发现:如果一个人患神经分裂症或双向情感障碍的风险越高,那么这个人从事艺术工作的可能性越大,该研究于2015年在《自然神经科学》(Nature Neuroscience)期刊上发表(Power,Steinberg,& Bjornsdottir,et al.,2015)[164]。

(二)我国有关创造性基因研究的进展

近年来,我国学者,包括我们团队的张景焕教授等人也积极投入有关创造性基因研究,并有所进展。

1.中国人群创造性思维相关的基因

我国研究者近年来采用候选基因分析的方式考察了创造性思维相关多的基因。2010年,中科院心理所研究者以108名6~14岁中国儿童为样本,采用托兰斯创造性测验,考察了COMT基因与创造性的关联,但发现该基因只与想象力有关,与其他创造性思维指标无关(Lu & Shi,2010)[165]。2015年,北京大学研究者以753名14~19岁健康中国高中学生为样本,也发现了COMT基因与顿悟问题解决的关联(Jiang,Shang,& Su,2015)[166]。

2014年至今,山东师范大学的研究者以500多名汉族大学生为样本,考察了多巴胺DRD2和COMT基因及其交互作用、五羟色胺TPH基因与言语和图片创造性思维、顿悟问题解决、创造潜力的关联(Zhang & Zhang,2016[167],2017[168])。例如,该研究团队采用图片和言语发散性思维测验,发现了创造潜力与DRD2基因的关联(Zhang,Zhang,& Zhang,2014)[169],与COMT基因及其与DRD2基因之间交互作用的关联(Zhang,Zhang & Zhang,2014)[170],与TPH基因的关联;采用经典顿悟问题解决任务(Zhang & Zhang,2017)[171],发现了空间顿悟问题解决与DRD2基因的关联。

2.中国人群创造性人格相关的基因

我国研究者采用问卷量表的方式考察了创造性人格特质与基因关系。例如,河南科技大学研究者采用威廉姆斯创造性倾向量表,以800多名中国大学生为样本,发现脑源性神经营养因子BDNF基因与大学生创造性人格特质(好奇性)有关(李舍,曹国昌,张培哲,等,2012)[172]。该研究团队还以700多名中国大学生为样本,发现了X染色体上的单胺氧化酶A基因(MAOA)与大学生想象力的关联(韩海军,李舍,杜坤朋,等,2015)[173]。

3.中国人群基因环境交互作用对创造性的影响

近期,山东师范大学的研究者开始探讨多巴胺和五羟色胺基因与家庭环境交互作用对创造性的影响(张景焕,张木子,张舜,等,2015)[174]。研究者提出从以下三个方面探讨创造性的遗传与观景因素。第一,创造性相关的基因和神经递质相关基因对创造性个体差异的解释力。第二,家庭环境与基因型交互作用对创造性的影响。第三,创造性思维与人格遗传环境因素的异同。例如,山东师范大学的研究者以两百多名中国汉族大学生为样本,发现多巴胺DRD2基因与创造性问题提出能力的独创性和灵活性有关,并且DRD2基因与父母教养方式的交互作用对创造性问题提出有显著影响(原鹏莉,2016)[175]。

4.中国人群创造性“基因—脑—环境—创造性行为”研究展望

随着神经影像遗传学研究方法和技术的快速发展,研究者可以基于以往认知神经科学和遗传学的发现,从脑结构、(静息态和任务下的)脑功能、大脑两个半球的偏侧化模式角度,利用不同类型人群(儿童、一般成人、特殊被试),考察与创造性相关的基因与环境因素,研究其交互作用,并从个体差异角度研究基因、环境、大脑与创造性思维和人格的关系。近期,我国研究者呼吁在“基因—脑—环境—行为”框架下,开展有关创造性与精神疾病关系的大数据交叉整合研究以及发展性研究,探索遗传与环境对我国不同年龄个体的创造性行为及其脑机制的影响(李亚丹,黄晖,杨文静,等,2016)[176]。

[1] Fink,A.& Benedek,M.,EEG alpha power and creative ideation,Neuroscience and Biobehavioral Reviews,2014,44,pp.111-123.

[2] Lustenberger,C.,Boyle,M.R.,& Foulser,A.A.,et al.,Functional role of frontal alpha oscillations in creativity,Cortex,2015,67,pp.74-82.

[3] Mayseless,N.& Shamay-Tsoory,S.G.,Enhancing verbal creativity:Modulation creativity by altering the balance between right and left inferior frontal gyrus with tDCS.Neuroscience,2015,291,pp.167-176.

[4] Heinonen,J.,Numminen,J.,& Hlushchuk,Y.,et al.,Default mode and executive networks areas:Association with the serial order in divergent thinking,Plos One,2016,11(e01622349).

[5] Kleibeuker,S.W.,De Dreu,C.K.,& Crone,E.A.,Creativity development in adolescence:Insight from behavior,brain,and training studies,New Directions for Child and Adolescent Development,2016(151),pp.73-84.

[6] Beaty,R.E.,Christensen,A.P.,& Benedek,M.,et al.,Creative constraints:Brain activity and network dynamics underlying semantic interference during idea production,NeuroImage,2017,148,pp.189-196.

[7] Wu,C.,Zhong,S.,& Chen,H.,Discriminating the difference between remote and close association with relation to White-Matter structural connectivity,Plos One,2016,11(e016505310).

[8] Villarreal,M.F.,Cerquetti,D.,& Caruso,S.,et al.,Neural correlates of musical creativity:differences between high and low creative subjects(vol 8,e75427,2013),Plos One,2014,9(e947394).

[9] Pinho,A.L.,Ullen,F.,& Castelo-Branco,M.,et al.,Addressing a paradox:Dual strategies for creative performance in introspective and extrospective networks,Cerebral Cortex,2016,26(7),pp.3052-3063.

[10] Vartanian,O.,Bouak,F.,& Caldwell,J.L.,et al.,The effects of a single night of sleep deprivation on fluency and prefrontal cortex function during divergent thinking.Frontiers in Human Neuroscience,2014,8,p.214.

[11] Kroeger,S.,Rutter,B.,& Stark,R.,et al.,Using a shoe as a plant pot:Neural correlates of passive conceptual expansion,Brain Research,2012,1430,pp.52-61.

[12] Ellamil,M.,Dobson,C.,& Beeman,M.,et al.,Evaluative and generative modes of thought during the creative process,NeuroImage,2012,59(2),pp.1783-1794.

[13] Duff,M.C.,Kurczek,J.,& Rubin,R.,et al.,Hippocampal amnesia disrupts creative thinking,Hippocampus,2013,23(12),pp.1143-1149.

[14] Warren,D.E.,Kurczek,J.,& Duff,M.C.,What relates newspaper,definite,and clothing?An article describing deficits in convergent problem solving and creativity following hippocampal damage,Hippocampus,2016,26(7),835-840.

[15] De Pisapia,N.,Bacci,F.,& Parrott,D.,et al.,Brain networks for visual creativity:A functional connectivity study of planning a visual artwork,Scientific reports,2016,6,p.39185.

[16] Jung,R.E.,Segall,J.M.,& Bockholt,H.J.,et al.,Neuroanatomy of creativity,Human Brain Mapping,2010,31(3),pp.398-409.

[17] Fink,A.,Koschutnig,K.,& Hutterer,L.,et al.,Gray matter density in relation to different facets of verbal creativity,Brain Structure & Function,2014,219(4),1263-1269.

[18] Gansier,D.A.,Moore,D.W.,& Susmaras,T.M.,et al.Cortical morphology of visual creativity,Neuropsychologia,2011,49(9),pp.2527-2532.

[19] Takeuchi,H.,Taki,Y.,& Sassa,Y.,et al.,White matter structures associated with creativity:Evidence from diffusion tensor imaging,Neuro Image,2010,51(1),pp.11-18.

[20] Jauk,E.,Neubauer,A.C.& Dunst,B.,et al.M.,Gray matter correlates of creative potential:A latent variable voxel-based morphometry study,Neuro Image,2015,111,pp.312-320.

[21] Cousijn,J.,Koolschijn,P.C.M.P.,& Zanolie,K.,et al.,“The relation between gray matter morphology and divergent thinking in adolescents and young adults,”Plos One,2014,9(e11461912).

[22] Zhu,W.,Chen,Q.,& Tang,C.,et al.,Brain structure links everyday creativity to creative achievement,Brain & Cognition,2016,103,pp.70-76.

[23] Li,W.,Yang,W.,& Li,W.,et al.,Brain Structure and Resting-State Functional Connectivity in University Professors with High Academic Achievement,Creativity Research Journal,2015,27(2),pp.139-150.

[24] Bashwiner,D.M.,Wertz,C.J.,& Flores,R.A.,et al.,Musical creativity‘revealed’in brain structure:Interplay between motor,default mode,and limbic networks,Scientific Reports,2016,6,20482.

[25] Navas-Sanchez,F.J.,Carmona,S.,& Aleman-Gomez,Y.,et al.,Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents,Human Brain Mapping,2016,37(5),pp.1893-1902.

[26] Takeuchi,H.,Taki,Y.,& Sassa,Y.,et al.,White matter structures associated with creativity:Evidence from diffusion tensor imaging,Neuro Image,2010,51(1),pp.11-18.

[27] Jung,R.E.,Segall,J.M.,& Bockholt,H.J.,et al.,Neuroanatomy of creativity,Human Brain Mapping,2010,31(3),pp.398-409.

[28] Takeuchi,H.,Taki,Y.,& Sekiguchi,A.,et al.,Mean diffusivity of globus pallidus associated with verbal creativity measured by divergent thinking and Creativity-Related temperaments in young healthy adults,Human Brain Mapping,2015,36(5),pp.1808-1827.

[29] Takeuchi,H.,Taki,Y.,& Nouchi,R.,et al.,Regional homogeneity,resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner,NeuroImage,2017,pp.258-269.

[30] Wu,C.,Zhong,S.,& Chen,H.,Discriminating the difference between remote and close association with relation to White-Matter structural connectivity,Plos One,2016,11(e016505310).

[31] Martindale,C.,“Creative imagination and neural activity”,In R.Kunzendorf & A.Sheikh(Eds.),The psychophysiology of mental imagery:Theory,research,and application,Amityville,NY,Baywood,1990,pp.89-108.

[32] Takeuchi,H.,Taki,Y.,& Hashizume,H.,et al.,The Association between Resting Functional Connectivity and Creativity,Cerebral Cortex,2012,22(12),pp.2921-2929.

[33] Beaty,R.E.,Benedek,M.,& Wilkins,R.W.,et al.,Creativity and the default network:A functional connectivity analysis of the creative brain at rest,Neuropsychologia,2014,64,pp.92-98.

[34] Lotze,M.,Erhard,K.,& Neumann,N.,et al.,Neural correlates of verbal creativity:Differences in resting-state functional connectivity associated with expertise in creative writing,Frontiers in Human Neuroscience,2014,8(516).

[35] Pinho,A.L.,De Manzano,O.,& Fransson,P.,et al.,Connecting to create:Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas,Journal of Neuroscience,2014,34(18),pp.6156-6163.

[36] Aberg,K.C.,Doell,K.C.,& Schwartz,S.,The “creative right brain”revisited:Individual creativity and associative priming in the right hemisphere relate to hemispheric asymmetries in reward brain function,Cerebral Cortex,2016,27(10).

[37] De Souza,L.C.,Volle,E.,& Bertoux,M.,et al.,Poor creativity in frontotemporal dementia:A window into the neural bases of the creative mind,Neuropsychologia,2010,48(13),pp.3733-3742.

[38] Shamay-Tsoory,S.G.,Adler,N.,& Aharon-Peretz,J.N.,et al.,The origins of originality:The neural bases of creative thinking and originality,Neuropsychologia,2011,49(2),pp.178-185.

[39] Wu,T.Q.,Miller,Z.A.,& Adhimoolam,B.,et al.,Verbal creativity in semantic variant primary progressive aphasia,Neurocase,2015,21(1),pp.73-78.

[40] Midorikawa,A.& Kawamura,M.,The emergence of artistic ability following traumatic brain injury,Neurocase,2015,21(1),pp.90-94.

[41] Mayseless,N.,Aharon-Peretz,J.,& Shamay-Tsoory,S.,Unleashing creativity:The role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas,Neuropsychologia,2014,64,pp.157-168.

[42] Mayseless,N.& Shamay-Tsoory,S.G.,Enhancing verbal creativity:Modulation creativity by altering the balance between right and left inferior frontal gyrus with tDCS,Neuroscience,2015,291,pp.167-176.

[43] Fink,A.,Koschutnig,K.,& Benedek,M.,et al.,Stimulating creativity via the exposure to other people's ideas,Human Brain Mapping,2012,33(11),pp.2603-2610.

[44] Gruzelier,J.H.,EEG-neurofeedback for optimising performance.II:Creativity,the performing arts and ecological validity,Neuroscience and Biobehavioral Reviews,2014,44(SI),pp.142-158.

[45] Green,A.E.,Spiegel,K.A.& Giangrande,E.J.,et al.,Thinking cap plus thinking zap:TDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation,Cerebral Cortex,2017,27(4),pp.2628-2639.