第1部 快速学习!理解贝叶斯统计学的精髓(1 / 1)

在第1部中,将为您解说关于“贝叶斯统计的推算应该用何种方法来思考,具有什么样的性质”的问题。解说中采用了我们身边的许多事例,如“这位顾客是来买东西,还是随便逛逛”“收到的是真命巧克力?还是义理巧克力”对于读者来说,这些例子应当是很容易想象和理解的。另一方面,本书内容涉及贝叶斯统计学与“序贯理性”“内曼-皮尔逊统计学”的区别,这对于贝叶斯统计学的特征,已经探讨得相当深入了。

第1讲 信息增加导致概率变化 “贝叶斯推理”的基本方法

1-1 通过贝叶斯推理来辨别“买东西的人”和“随便逛逛的人”

本讲将通过一个商业案例,为大家介绍经典的贝叶斯推理方法。

商店里的售货员最关心的问题莫过于“这位顾客究竟是来买东西的,还是随便逛逛而已”。真正来买东西的顾客,一般而言,比起四处逛逛看看,更倾向于在最短时间内找到自己需要的商品。另一类顾客则是这样的:一时不急着买,而是先随便问问价格,为以后购买做个参考。对待前者,作为售货员,理应为其介绍需要的商品并让其买下;而对待后者,如果同样花费时间为其推荐商品,顾客不但不会购买,反而会感到厌烦,结果适得其反。

所以对于店员来说,通过顾客的行为来揣测他们的真实想法,是一项重要的本领。很多店员可以做到:通过直觉来判断顾客属于哪一类,而这正是身为一名店员的重要工作技巧。在此,我们将这种“基于直觉的判断”数值化,从而使它可以通过计算获得。把方法编成手册,教给新店员,这就像在互联网上能够实现自动判断的AI(人工智能)一样,是一项意义非凡的工作。

下文将具体介绍“将店员的判断方法数值化”的方法,该方法恰巧适用贝叶斯统计学。进而言之,通过该事例,我们也可以弄懂贝叶斯统计学的概念。下文将分节进行解说。

1-2 第一步:通过经验设定“先验概率”

假设一个场景:面前有一位顾客,此时你需要做的是,推测该顾客究竟是“来买东西的人”,还是“随便逛逛的人”。只有做出正确的判断,才能采取正确的接待方法。

推算的第一步:将两种顾客(来买东西的顾客、随便逛逛的顾客)的比例进行数值分配。这句话的意思是:假设面前的这位顾客一定属于两种中的一种,以此为前提,该顾客为第一种或第二种的可能性分别为多少?将这个可能性用数值表示出来。

在贝叶斯统计学中,这种“某种类别的概率(比例)”有一个专有名词,叫作“先验概率”。“事前”的含义是:在获得某项信息之前。此处的“信息”是指:附加的状况,比如顾客忽然过来询问。通过“过来询问”这一信息,可以对顾客类别的推算进行修改,而“先验概率”是指,在“过来询问”或“不过来询问”的情况发生之前进行的概率判断。

通常,“先验概率”可通过经验来判断。在特殊情况下,即使没有类似经验,也可以进行判断,这部分特殊事例将在第3讲进行解说,此处暂且不做讨论。

根据自己的经验,每5位顾客中就有1位是“来买东西的”,也就是说,这一部分顾客占全体的20%(0.2),那么剩下“随便逛逛”部分的比例便为80%(0.8)。这两个数字,便是两类顾客的“先验概率”。

在这个事例中,在观察面前顾客的行为之前,判断“该顾客是属于概率0.2的买东西的人,还是概率0.8的随便逛逛的人”,这个过程被称为“某一类别的先验分布”,如图表1-1所示。

图表1-1 先验分布:分割长方形

图表1-1中的大长方形被分割为两部分,两部分的面积所占比例分别为0.2和0.8,这正是分割时的诀窍。本书将在后面逐渐阐明:“面积”的概念在贝叶斯概率的计算中,起着重要的作用。

以上图示的方法为本书独创。希望各位读者将这幅图牢记于心,这样有助于在头脑中勾勒出贝叶斯统计学方法的大致雏形。

该图可以理解为:将整体分为两种不同的情况。这意味着,自己所处的环境为A或B中的一个,A情况下的顾客为“来买东西的人”,B情况下的顾客为“随便逛逛的人”,但不知道究竟是A还是B。只是先在头脑中构筑一个大致的印象。哲学上将这种见解称为“可能世界”,在进行逻辑推算或概率推算时,采用这种“划分互不相同的可能性”的思维方法,有利于整理思路。

在这里将长方形的面积设定为0.1和0.4,两部分的比例依然为1:4,这与设定为0.2和0.8时的比例相同。那么,为何要将面积设置为0.2和0.8呢?这是因为,用数值来计算概率的情况下,需要在多种可能性中,选取“将各部分概率相加,总和为1”的那一种,这种情况被称为“标准化条件”。

1-3 第二步:设置发生“向店员询问”事件的条件概率

在这一步,我们要做的是:为“来买东西的人”和“随便逛逛的人”这两类顾客分别设定“向店员询问”的概率。如果没有相关经验和数据作为支撑,这项工作是无法完成的。上一节讲到,即使没有相关经验,也可以设定先验概率。但此处的“各个分类的行动概率”,必须是基于一定的经验、实证、实验的数值。

图表1-2中的数值,是为了计算简便而设定的,并非真实数据。

图表1-2 关于“向店员询问”这一行为的条件概率

从图表1-2中可以看出,“来买东西的”顾客向店员询问的概率是0.9,而“随便逛逛的”顾客向店员询问的概率只有0.3。

需要注意的是:图表1-2从横向来看,0.9+0.1=1,0.3+0.7=1,两行都满足标准化条件;而纵向来看,0.9+0.3≠1,也就是说并不满足标准化条件。具体分析一下:横向的一行,表示某一类别的顾客可能采取的两种行动。比如第一行数字,表示“来买东西的人”向店员“询问”或“不询问”这两种行为,顾客有可能询问,也有可能不询问,最终采取的行动一定是其中之一,没有第三种可能性。而纵向来看,第一列数字表示,“来买东西的人”向店员询问的概率为0.9,“随便逛逛的人”向店员询问的概率为0.3,两个数字相加之和并不等于1。这是因为,对象范围包含了两个不同类别的顾客,并且也没有涵盖所有的行动。

图表1-2中的数字,表示“某一特定类别采取各种行动的概率”,这在高等数学中被称为“条件概率”。用“原因”的概念来解释,即“在原因明确的情况下,某一类别采取各项行动的结果概率”(第15讲中将介绍:如何用符号来表示条件概率)。

将两个类别的顾客,进一步按照“询问”和“不询问”的条件来分类,那么前文所述的两个大类别又可以细分为四个小类别,分别是:“来买东西的人询问店员”“随便逛逛的人询问店员”“来买东西的人不询问店员”“随便逛逛的人不询问店员”,如图表1-3所示。

图表1-3 四种互不相同的可能性

一共存在四种可能性:来买东西的人询问店员(左上区域)、来买东西的人不询问店员(左下区域)、随便逛逛的人询问店员(右上区域)、随便逛逛的人不询问店员(右下区域)。概率的具体计算方法将在第10讲中具体介绍,此处对于结论先进行说明:各个区域所表示的概率与每个长方形的面积相等。长方形的面积可以用乘法求得,如图表1-4所示。

图表1-4 四种互不相同的可能性各自所对应的概率

下面我们来确认一下,这四个“可能世界”(所有可能发生的情况)的概率之和:

0.2×0.9=0.18 0.2×0.1=0.02

0.8×0.3=0.24 0.8×0.7=0.56

(0.18+0.02)+(0.24+0.56)=1

1-4 第三步:通过观察到的行为,排除“不可能的情况”

下面,让我们进一步进行推测。

作为一名店员,现在你面临的情况是:顾客上前来打招呼。这也意味着,你观察到了顾客的某一种行为。这为“可能世界”又增添了一条信息。

这条信息的内容是:“不询问店员”的可能性消失了。上一节中提到,在顾客类别包括“来买东西的人”和“随便逛逛的人”两类,顾客的行为包括“询问”和“不询问”两类的情况下,“可能世界”共分为4种。在现实世界中,因为已经观察到了“询问”这一行为,因此“不询问”这一行为覆盖的世界就不复存在了。这意味着,“可能世界”受到了限制。下面我们借助图形来理解这一问题。(图表1-5)

图表1-5 信息导致可能性受到限制

因为“可能世界”变成了2个,从而我们可以推测获得新的数值。

在一部分可能性不复存在,而一部分可能性又在现实中受到了限制的情况下,会发生些什么呢?这正是所谓的——在推测中“概率发生变化”。下面通过一个简单的例子,来解释一下何为“概率的变化”。

现在,有人洗好了52张扑克牌摆在你面前,扑克牌背面朝上。当被问道“最上面一张扑克牌的花色是什么呢?”的问题时,如果你回答“是黑桃”的话,那么,这一推测为正确的概率是多少呢?当然,是四分之一,对吧。因为扑克牌共有四种花色,每一种花色的可能性都是相等的。

但是,如果对方背着你偷看了最上面的一张扑克牌,并告诉你“最上面一张扑克牌其实是黑色的”,结果又会怎样呢?从你的推测来看,扑克牌是红色花色的可能性自然就不存在了。当然,你的推测也可能会发生变化吧。也就是说,此时只有可能是黑桃或梅花,所以,你推测这张扑克牌的花色“是黑桃”的概率应当为二分之一。

将这个实验的来龙去脉用图来表示,如图表1-6所示。

图表1-6 因某种可能性消失而导致的概率变化

最初,4种花色的概率相加之和为1。但是,由于红色花色的可能性不复存在,此时黑桃的概率和梅花的概率相加之和便不等于1。为此,还是要保持之前的比例关系,通过恢复标准化条件(使所有情况的概率相加之和为1),所以,花色为黑桃的概率应变更为二分之一。

1-5 第四步:寻求“来买东西的人”的“贝叶斯逆概率”

上一节,由于观察到“询问”这一行动,使得“可能世界”被限定在两个以内。也就是说,面前的顾客所属的世界,要么是“来买东西的人询问店员”,要么是“随便逛逛的人询问店员”,只有这两种可能性。显示其可能性的数值(概率),如图表1-7所示。

图表1-7“不询问”的可能性消失

根据观察到的行为,可能性被限定为两种,此时,所有情况的概率(长方形面积)之和已经不为1。因此,要采取上一节中用扑克牌举例的办法,保持比例关系,恢复标准化条件,从而使概率发生变化。具体如下所示:

(左边长方形的面积):(右边长方形的面积)=0.18:0.24=3:4

简化比值,合计3+4=7,如果按照除法计算,就会得出“相加得1”的结果。也就是说,

(左边长方形的面积):(右边长方形的面积)=3:4=3/7:4/7

用图表示,如图表1-8所示。

图表1-8 恢复标准化条件,计算后验概率

从上表中我们可以看出,上前询问的顾客为购买者的概率,可以推定为3/7。这个概率,被称为“贝叶斯逆概率”或“后验概率”。

在此,对“逆概率”一词中的“逆”的含义,进行简要说明。(在之后的讲义中会逐渐进行详细说明)。

所谓的“逆”是指:用与之前相反的方法,来解析表示几个互不相同的“世界”的图形。截至上一节的观点是:顾客共分两种类别,每一种类别都会随机做出“询问”或“不询问”的行为,这一观点的前提是对图表进行纵向观察。这正是从“类别”这一原因,得到“行动”这一结果的处理方法。但是,现在让我们来横向观察图表。也就是说,“上前询问”的顾客可分为“来买东西的人”和“随便逛逛的人”两种类别,从中随机选择一种。从“询问”这一行动的结果追溯到“类别”这一原因。【结果→原因】这一过程,就是“逆概率”这一概念中“逆”的含义。

1-6 贝叶斯推理过程的总结

用图表对于之前提到的后验概率的计算方法进行总结,如图表1-9所示。

图表1-9 关于顾客类别的贝叶斯推理过程

那么,通过求后验概率,我们能够了解到什么呢?其实,只要抽出图表的开头、中间和结尾部分,并填入数值,结果就很明确了。(图表1-10)

图表1-10 有关顾客类别的贝叶斯更新

看这个图表便可了解到,在没有观察到任何行为时,面前的顾客是“来买东西的人”的概率为0.2(先验概率),但观察到“上前询问”这一行为之后,数值便更新为约0.43(后验概率)。也就是说,虽然并不能断定这位顾客就是“来买东西的人”,但这一结果的可能性提高到了以前的两倍,这便是“贝叶斯更新”。

在本书中,上述过程称为“贝叶斯推理”。贝叶斯推理可以总结为:通过观察行动(信息),将先验概率通过贝叶斯更新,转换为后验概率。在本书中,每个案例中进行的推算称为“贝叶斯推理”,而将这些案例中的推算方法整合起来,便是“贝叶斯统计学”。

第1讲·小结

1.设定两个类别(“来买东西的人”和“随便逛逛的人”)的概率(先验概率)。

2.设定类别“来买东西的人”“上前询问”以及“不上前询问”两种行为的概率,和“随便逛逛的人”“上前询问”以及“不上前询问”的概率(条件概率)。这需要一定的经验和数据作为支撑。

3.因为观察到了“上前询问”的行为,因此,可以排除掉“不上前询问”的可能性。

4.使“来买东西的人上前询问”的概率和“随便逛逛的人上前询问”的概率组合,满足标准化条件。也就是说,在保持比例关系的前提下,使其相加之和等于1。

5.还原标准化条件后的“来买东西的人”的概率,也就是观察到“上前询问”行为后,判断“来买东西的人”类别的后验概率。

6.根据观察到的行为,先验概率更新为后验概率。这就是贝叶斯更新。

练习题

答案参见此处

第一次练习,我们先做一个设定全部相同,只改变数值的练习吧。

先验概率的设定

顾客中,“来买东西的人”的比例占全体的40%(0.4),“随便逛逛的人”的比例占全体的60%(0.6)。

有关信息的条件概率的设定

下表提供了各类别的“上前询问”和“不上前询问”的条件概率。

按以下顺序,求观察到“上前询问”这一行为后,“来买东西的人”的后验概率。

各个类别的先验概率分别为,

(a)=()、(b)=()

添加信息后的条件概率分别为,

(c)=()、(d)=()

(e)=()、(f)=()

四种互不相同的情况的概率分别为,

(g)=()×()=()

(h)=()×()=()

(i)=()×()=()

(j)=()×()=()

在观察到“上前询问”的2种情况中,恢复标准化条件,则

观察到“上前询问”的情况下,该顾客为“来买东西的人”的后验概率=()